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A B S T R A C T

Dairy farming consumes a significant amount of energy, making it an energy-intensive sector within agriculture.
Integrating renewable energy generation into dairy farming could help address this challenge. However,
fluctuations in renewable generation pose a challenge to this integration. Effective battery management
techniques are needed to store and utilize the energy generated from renewable sources. The objective of
this research is to leverage Reinforcement Learning to develop an effective approach for battery management
systems in dairy farming. Our work contributes by implementing a Q-learning algorithm for dairy farm battery
management, incorporating wind and solar energy, exploring the state space of the algorithm, and considering
Ireland as a case study as it works towards attaining its 2030 energy strategy centered on the utilization of
renewable sources. The findings show that the proposed algorithm reduces the cost of imported electricity
from the grid by 13.41%, 24.49% when utilizing wind generation, and peak demand by 2%. These findings
highlight the effectiveness of Reinforcement Learning for battery management in the dairy farming sector.
1. Introduction

The growth in the global population has led to an increased demand
for food products. Milk maintains an important place in the dietary
patterns of individuals across the globe because of its essential nutri-
tious components. According to the Food and Agriculture Organisation
(FAO), global milk production rose from 735 million metric tonnes in
2000 to 855 million metric tonnes in 2019 [1]. The rising demand for
dairy products has led to an increase in the number of dairy farms [2].
These farms heavily rely on electricity for multiple activities like milk
cooling, water heating, pumping, and lighting [3]. Meeting these en-
ergy needs requires substantial imports of electricity from external
grids. However, the rising cost of electricity necessitates considering
alternative energy sources like solar photovoltaic and wind turbines.
Embracing renewable energy sources can help satisfy the energy re-
quirements of farms and decrease dependence on the external grid for
importing electricity [4]. By 2030 Irish government aims to transition
to a low-carbon economy within the EU, emphasizing renewable en-
ergy, secure electricity supply, and enhanced energy efficiency [5]. This
research supports these goals by efficiently managing energy storage,
increasing renewable energy use, and reducing carbon emissions by
minimizing grid reliance as the grid generates most of the energy by
burning fossil fuels [6].

∗ Corresponding author.
E-mail address: N.Ali3@universityofgalway.ie (N. Ali).

Power generated from renewable energy sources exhibits temporal
variability. Employing a battery management system for storing elec-
trical energy is crucial for future use. Different battery management
systems are applied to different applications [7]. The use of batter-
ies has the potential to influence the economic aspects of electricity
consumption within dairy farming. However, optimizing battery perfor-
mance necessitates the implementation of different strategies. Various
conventional methods have been employed to improve battery effi-
ciency. These approaches include such as Maximizing Self-Consumption
(MSC) and Time of Use (TOU) [8].

In recent years, there has been remarkable progress in Artificial In-
telligence (AI), largely driven by the data revolution. This advancement
has shown immense potential across various fields, yielding promising
results [9]. One significant area within AI is Reinforcement Learning
(RL), where agents can operate in stochastic environments without
explicit knowledge of the environment or predefined decision-making
processes. Instead, with established objective functions. Two main
algorithms that are particularly prominent in the field of RL are actor-
critic learning and Q-learning [10,11]. RL agents can effectively learn
a policy in diverse domains through these algorithms. This research
aims to use RL agents to learn battery management policies efficiently.
The primary goal is to optimize the charging/discharging of a battery
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to maximize renewable utilization and reduce the cost of electricity
imported from the grid.

Existing research has highlighted the efficacy of RL in battery
management across diverse contexts. However, the integration of RL
into the agricultural sector, specifically in dairy farming for battery
management, remains relatively unexplored in current literature. The
main contributions of this research are specified below:

1. Using Q-learning we present an autonomous learning approach
for efficient battery management in dairy farms, and we demon-
strate the effectiveness of our algorithm in achieving improved
energy efficiency over established baseline algorithms.

2. In contrast to existing approaches, this work also analyses the
influence of incorporating wind energy data on the effectiveness
of battery management.

3. We evaluate the impact of variations in state space information
on the performance of our Q-learning approach. We explore the
impact of additional parameters including load, PV, and wind to
determine the most optimal solution.

4. We extend our experimental analysis to also evaluate the Q-
Learning algorithm’s performance using data based on case stud-
ies in Finland and Ireland, focusing on dairy farm battery man-
agement.

The remainder of this paper is structured as follows: Section 2
xamines both conventional and AI methodologies in battery manage-
ent. Section 3 formulates the research problem and the proposed
ethodology. Section 4 Evaluate the performance of our proposed

pproach. Finally, Section 5 concludes the research, emphasizing the
rimary contributions of this work.

. Background and related work

Numerous researchers have worked on improving battery manage-
ent to reduce reliance on external power grids and lower electricity

mport expenses. Surprisingly, the use of RL in battery management
ithin the dairy farming sector has been unexplored. This study em-
loys RL techniques to manage batteries in dairy farming, to reduce
ependence on external power grids. Researchers investigated differ-
nt methods for efficiently handling battery management, including
onventional battery control methods such as rule-based and dynamic
rogramming strategies, as well as AI methods, mainly RL. There is
rising interest in utilizing RL, particularly because of the volatile

ature of the environment within agent interact. RL agents can adapt
o volatile or non-deterministic environments.

.1. Reinforcement learning

RL is utilized in the research to effectively manage the battery
ontroller to maximize the utilization of renewable generation. RL
nvolves interaction between an agent and its environment to maximize
he cumulative reward obtained from the environment through specific
ctions taken by the agent. The environment can be characterized as
Markov Decision Process (MDP). An MDP comprises a state space

enoted by S, an action space denoted by A, a state change denoted by
𝑝(𝑠𝑡 + 1|𝑠𝑡; 𝑎𝑡) where p represents a probability distribution governing
state transitions, and a reward function denoted by 𝑅 ∶ 𝑆 × 𝐴 → 𝑅.
The agent takes actions at each time interval based on the current
state observations. The agent changes behavior by considering the
outcomes and feedback from previous actions. A policy determines
how the agent acts in the environment denoted as 𝜋. The function 𝜋
maps each state in a given environment to a probability distribution
of possible actions. The reward from a state is defined as the sum of
discounted future rewards, which can be mathematically represented
as 𝑅𝑡 =

∑𝑇
𝑖=𝑡 𝛾

(𝑖−𝑡)𝑟(𝑆𝑖, 𝐴𝑖). In this equation, 𝑅𝑡 defines the reward at
ime t . The symbol 𝛾 represents the discount factor, ranging from 0 to
, and π− 𝑡 illustrates the importance of future rewards as compared to
2

mmediate rewards. The rewards are influenced by the actions taken,
hich are determined by the policy 𝜋. The goal of RL is to develop a

policy that maximizes the expected cumulative reward starting from the
initial probability distribution. The aim is to maximize the total reward
received from the environment.

The expected result of acting in a specific state, while obtaining a
certain policy, is calculated using the action-value function. Eq. (1), a
fundamental component in many RL algorithms, provides a means to
evaluate the potential outcome of actions within the framework of the
given policy.

𝑄𝜋 (𝑠𝑡, 𝑎𝑡) = 𝐸𝜋

[ ∞
∑

𝑘=0
𝛾𝑘𝑟𝑡+𝑘+1 ∣ 𝑠𝑡, 𝑎𝑡

]

(1)

q. (1) denotes the action-value function for a given policy 𝜋 at a
pecific time t, concerning the state 𝑠𝑡 and action 𝑎𝑡. The returned value
epresents the expected cumulative discounted reward for taking action
t in state 𝑠𝑡 and then following policy 𝜋 for all future time steps. The
ymbol 𝐸𝜋 denotes the expected value under policy 𝜋. Additionally,
he summation ∑∞

𝑘=0 denotes the sum over all potential future time
teps that begin from time 𝑡+1. The variable 𝑟𝑡+𝑘+1 denotes the reward
cquired at time t+k+1 subsequent to executing the action 𝑎𝑡 within
he state 𝑠𝑡. The 𝛾 represents the discount factor which maximizes the
uture reward.

Q-learning is one of the basic RL algorithms that does not require
model of the environment. It is commonly used to determine the

est policy for selecting actions in a finite Markov decision process.
his approach aims to get information regarding the significance of
n action within a specific state, enabling an agent to make decisions
hat optimize the overall accumulated reward over a given period.
he algorithm comprises the process of updating Q-values, which are
ction-value pairs, that are stored within a table. Each Q-value corre-
ponds to the anticipated utility of executing a specific action within
particular condition, subsequently following the optimal policy. The
ain formulation to update the Q-value is depicted in Eq. (2)

(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎) −𝑄(𝑠𝑡, 𝑎𝑡)] (2)

he update rule for the Q-value of the current state–action pair (𝑠𝑡, 𝑎𝑡)
nvolves a scalar factor 𝛼, Also known as a learning rate which controls
he rate at which the agents will explore the environment ranging from

to 1 and scales the difference between the observed reward R𝑡 plus
he discounted estimate of the maximum Q-value for the next state 𝑠𝑡+1
discounted by a factor 𝛾) and the current estimate of the Q-value for
he current state–action pair 𝑄(𝑠𝑡, 𝑎𝑡).

.2. Conventional battery control methods

Many studies have focused on identifying effective operational
trategies for PV battery systems, for different objectives [12]. Specifi-
ally, the Maximizing Self-Consumption (MSC) and Time of Use (TOU)
ethods for battery charging [13].

The MSC is a method used for managing battery charging and
ischarging by maximizing the utilization of solar power generation.
t charges the maximum amount of solar energy available [12]. Braun
t al. highlighted that optimal battery usage significantly increases the
ocal consumption of solar energy [14]. Further, they investigated the
ptimal sizing of photovoltaic systems [15] and the capacity require-
ents for energy storage [16], aiming to maximize the use of locally

enerated solar power and reduce reliance on external power grids.
n their comprehensive review, Luthander et al. analyzed previous
tudies on solar power self-consumption in buildings, concluding that
roper battery sizing can improve self-consumption rates by 13%–
4% [17]. Sharma et al. conducted a study on the optimization of
attery size for zero-net energy homes equipped with rooftop solar pan-
ls in South Australia, employing the MSC operational strategy [18].
heir findings suggest that installing suitable batteries can enhance the
elf-consumption of solar energy by 20%–50% [19].
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TOU strategy uses electricity prices for charging and discharg-
ing the battery; it charges the battery when the prices are low and
discharges at peak times. Feed-in Tariffs (FiT) and TOU pricing strate-
gies, implemented in several countries, aim to enhance the adop-
tion of Photovoltaic Battery (PVB) systems and encourage consumer
involvement in energy management, which has been a significant
area of research. [20]. Other studies have focused on the TOU tar-
iff method for efficient battery management. For instance, Christoph
et al. utilized optimization techniques to refine the TOU rate struc-
ture [21], while Li et al. developed TOU tariffs using the Gaussian
Mixture Model [22]. This approach has enabled prosumers to get
economic advantages by taking advantage of FiT and adapting to
varying electricity prices during peak and off-peak times, which is a
main benefit of the TOU strategy [23]. Research by Gitizadeh et al.
and Hassan et al. explores optimizing battery capacity, by utilizing
TOU [24,25]. Additionally, Ratnam et al. found that many PVB system
users were able to achieve significant annual cost reductions through
FiT programs [26].

2.3. Reinforcement learning for energy management

RL algorithms are widely used in various applications. Wei et al.
implemented dual iterative Q-learning for managing batteries in smart
residential settings [27]. This form of Q-learning is designed to en-
hance energy management in smart homes by optimizing the charging
and discharging of batteries. Similarly, Kim et al. developed an RL-
based algorithm for energy management in smart buildings [28]. Their
approach uses RL to dynamically identify the most effective energy
regulation strategy based on real-time data. Ruelens et al. also applied
RL, but to the operation of an electric water heater [29], using the
algorithm to boost the heater’s energy efficiency by learning and adapt-
ing to real-time user demand and grid conditions. Research indicates
that RL can significantly enhance both efficiency and cost-effectiveness
in energy consumption within smart grids. Furthermore, Li et al. in-
troduced a multi-grid RL method to optimize the energy efficiency
and comfort of Heating, Ventilation, and Air Conditioning (HVAC)
systems [30]. This method balances HVAC energy use with maintaining
optimal room temperature and humidity. Their findings suggest that
this approach effectively optimizes energy consumption while ensuring
comfortable indoor environments.

2.4. Reinforcement learning for battery management

Numerous studies have explored battery management using RL.
Foruzan et al. introduced the use of RL for managing energy in mi-
crogrids [31]. They employed an RL system capable of adapting in
real-time to changing energy needs and generating renewable energy,
enhancing the energy efficiency of microgrids. RL is effective in im-
proving energy consumption in a cost-efficient manner. In a similar
application, Guan et al. developed an RL-based solution for controlling
domestic energy storage to reduce electricity cost [32]. This RL method
optimizes the charging and discharging of energy storage systems, help-
ing decrease peak power demands and shift energy usage to cheaper,
off-peak times, lowering electricity bills. Their simulations demon-
strated that this strategy could effectively reduce the electricity cost
associated with household energy storage systems. Liu et al. explored
the use of Deep Reinforcement Learning (DRL) for optimizing energy
management in households [33]. This study utilized a DRL system
designed to enhance energy efficiency in smart homes by constantly
learning the most effective energy management strategies. In simulated
smart home environments, this DRL-based approach was more efficient
and cost-effective than traditional rule-based methods, indicating its
potential to significantly improve energy management in intelligent
residential settings. Cao et al. proposed the DRL method for battery
charging and discharging, handling power price uncertainty, improving
the accuracy of the degradation model, and non-linear charging and
3

discharging efficiency [34]. They demonstrated the algorithm’s efficacy
and performance by testing it on historical wholesale electricity data
from the United Kingdom. Yu et al. use Deep Deterministic Policy
Gradient (DDPG) for the home energy management system to minimize
electricity cost by scheduling HVAC systems and Effective Solutions
for Storing (ESSs) [35]. By leveraging the dynamic prices, the re-
sults demonstrated that the proposed algorithm saves energy cost by
8.1%–15.21%.

Abedi et al. have created a real-time intelligent battery energy
control system for residential buildings that incorporates solar panels,
battery energy systems, and grid connectivity by using Q-learning [36].
The results of their study demonstrate that the algorithm effectively
decreases the monthly electricity cost by 7.99% to 3.63% for house 27
and 6.91% to 3.26% for house 387. Wei et al. proposed the DDPG a
DRL algorithm for the fast charging of lithium-ion batteries (LIB) [37].
They compare the proposed algorithm with the rule base by considering
different constraints i.e. LIB temperature, charging rapidity, and degra-
dation. Huang et al. introduce Proximal Policy Optimisation (PPO) as
a DRL algorithm to optimize the capacity scheduling of solar battery
systems [38]. To enhance the safety of the battery, a safety control algo-
rithm is implemented by utilizing a serial approach incorporated with
a PPO algorithm. Their findings indicate that the proposed algorithm
outperforms other DRL algorithms. Cheng et al. propose a periodic
deterministic policy gradient (PDPG) to schedule the charging of multi-
battery energy storage systems (MBESS) [39]. Their research shows
that compared to the DPG algorithm, the PDPG algorithm reduces
power cost by 8.79%. Paudel et al. employ the MDP framework to
efficiently manage battery storage systems’ charging and discharging
operations by considering the electricity price fluctuations and other
relevant parameters [40]. The authors substantiate their method’s ef-
fectiveness by installing 150 fast charging stations and a battery storage
system throughout the Pennsylvania-New Jersey-Maryland region. The
studies mentioned above show RL’s impact on battery management
applications.

The conventional and RL studies underscore the importance of max-
imizing local energy utilization and optimizing battery usage. However,
some limitations have been identified in these works that our research
aims to address. Firstly, they did not address performance variations
under diverse weather conditions and geographical locations, besides
the impact of fluctuating energy prices and renewable generation.
Secondly, these studies focus solely on one renewable source and do
not consider the effects of integrating other energy sources. Lastly,
all the conventional and RL methods have been applied in smart
homes and buildings, but their adaptation to dairy farm battery man-
agement remains largely unexplored. Dairy farms typically consume
more energy than households or offices due to operational needs and
reliance on high-energy equipment like milking machines and milk
cooling systems, which account for 20%–30% of the farm’s electricity.
Furthermore, research has shown that electricity consumption per dairy
cow ranges from 4 to 7.3 kWh/week [3]. In contrast, households and
offices use energy mainly for heating, cooling, lighting, and appliances.
The unique requirements of dairy farming operations lead to higher
load consumption and diverse consumption patterns. This research
addresses these gaps by demonstrating how a Q-learning algorithm op-
timizes battery management in dairy farming settings. It also mitigates
drawbacks by testing the proposed methodology across various loca-
tions and weather conditions, integrating multiple renewable sources,
and considering electricity price fluctuations.

3. Methodology

3.1. System design

The PVB system connected to the grid, as depicted in Fig. 1, includes
a set of components: solar panels, a battery storage unit, the power
grid, and a dairy farm that utilizes electricity from both solar and
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Fig. 1. Overview of the system architecture.
grid sources. The energy storage system considered for this research
is the Tesla Powerwall 2.0, which offers a substantial capacity of 13.5
kWh and supports both charging and discharging 5 kW [41]. The PV-
generated electricity is used to meet the farm’s load, charge the battery,
or sell it back to the grid, according to the operational requirements.
The role of the charge/discharge controller is to charge and discharge
the battery according to the renewable generation, electricity demand,
and price of electricity. Meanwhile, the power grid is connected to the
dairy farm and the battery. It supplies electricity when there is high
demand and low renewable generation. The battery storage is used to
satisfy the farm’s extra energy needs, a process commonly referred to
as peak shaving [42]. This involves using excess energy demands by
utilizing stored power in the battery.

3.2. Data and price profile

For this study, two datasets were used: One dataset from Finland
to train the algorithm and a second dataset collected from Ireland to
evaluate the performance of the algorithm. The Finland dataset has
information about the load demand from dairy farms, PV generation,
wind generation, and electricity prices. The load data is collected
from [43] and provides hourly electricity consumption over a year.
Fig. 2(a) demonstrates the monthly distribution of electricity demands
for a dairy farm and PV generation and wind energy generated by the
dairy farm throughout the year. The dataset consists of a dairy farm that
has approximately 180 cows and has an estimated annual electricity
usage of around 261 megawatt-hours (MWh). The PV and wind data
was collected from the System Advisor Model (SAM) having a capacity
of 20 kW [44]. The Finland electricity price data was collected from
a Helsinki electricity supply company [45]. This price data is dynamic
and includes three different price levels [46]. The lowest rate is during
off-peak hours, the standard rate applies for most of the day, and a
higher peak rate is charged during the busiest hours. Specifically, the
pricing is segmented into three time periods. The off-peak hours, with
the lowest rate, are from 11 p.m. to 7 a.m. The standard rate applies
during two intervals: from 8 a.m. to 5 p.m. and from 7 p.m. to 10 p.m.
The peak rate, which is the highest, is charged between 5 p.m. and
7 p.m. Fig. 2(b) shows how these electricity prices fluctuate over the
day.
4

The Ireland dataset includes data on farm load, PV generation, and
electricity pricing. However, it lacks wind generation data as we were
unable to find wind generation data for Ireland. The load consumption
data, detailing electricity from the dairy farm over a year, was col-
lected from a study on Irish dairy farms [47]. The PV generation data
was collected from SAM [44] having a capacity of 20 kW. The price
data is collected from the Ireland electricity supply company Electric
Ireland [48]. Fig. 3 shows the Irish dairy farm energy consumption
and photovoltaic (PV) energy generation and electricity price. This
figure illustrates the variations in PV generation and electricity price,
it also demonstrates the farm electricity demand patterns. The aim is
to explore the relationship between energy consumption and PV gener-
ation, particularly in the Irish dairy farm context. Fig. 3(a) specifically
illustrates the monthly load demand and PV generation of the dairy
farm over one year, while Fig. 3(b) illustrates the price variations over
the day.

3.3. Baseline battery controllers

The battery management system was optimized through the imple-
mentation of two rule-based strategies which are MSC and TOU in the
baseline algorithm [8]. The MSC is a means of optimizing the utilization
of surplus energy generated by the PV system through its storage in a
battery. The TOU involved modifying the battery charging process in
response to variations in electricity prices. These two strategies were
implemented to manage the battery as a baseline comparison method.

The MSC strategy is a prevalent energy management approach
utilized in PV-integrated energy systems. Its primary objective is to
optimize the utilization of PV-generated power for load demand and
battery charging. The core principle of this system is that when the
energy produced by PV sources surpasses the current energy needs,
any excess energy is stored in the battery, and the remaining energy
is transmitted to the grid. In cases where the PV generation falls short
of the required load, the battery is utilized as the primary source for
meeting the load demand. It is discharged to ensure that the load
demand is met. If the load demand exceeds the combined capacity
of the PV system and battery, external electricity will be purchased
from the power grid to compensate for the shortfall. The MSC mostly
depends on PV generation and if the PV is not available this strategy
does not work well. The pseudocode of the MSC strategy is presented
in the Algorithm 1.
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Fig. 2. Dairy farm electricity, solar photovoltaic generation, and price data from Finland.
Fig. 3. Dairy farm electricity, solar photovoltaic generation, and price data from Ireland.
Algorithm 1 MSC Strategy for Battery Management
1: Initialize 𝑝𝑣_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝑙𝑜𝑎𝑑_𝑑𝑒𝑚𝑎𝑛𝑑, 𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦, 𝑡𝑜𝑡𝑎𝑙_𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠
2: while 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1 to 𝑡𝑜𝑡𝑎𝑙_𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 do
3: Update 𝑝𝑣_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 and 𝑙𝑜𝑎𝑑_𝑑𝑒𝑚𝑎𝑛𝑑
4: if 𝑝𝑣_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 > 𝑙𝑜𝑎𝑑_𝑑𝑒𝑚𝑎𝑛𝑑 then
5: 𝑒𝑥𝑐𝑒𝑠𝑠_𝑒𝑛𝑒𝑟𝑔𝑦 ← 𝑝𝑣_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑙𝑜𝑎𝑑_𝑑𝑒𝑚𝑎𝑛𝑑
6: if 𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 can store 𝑒𝑥𝑐𝑒𝑠𝑠_𝑒𝑛𝑒𝑟𝑔𝑦 then
7: Store 𝑒𝑥𝑐𝑒𝑠𝑠_𝑒𝑛𝑒𝑟𝑔𝑦 in battery
8: else
9: Store in battery up to 𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

10: Transmit remaining 𝑒𝑥𝑐𝑒𝑠𝑠_𝑒𝑛𝑒𝑟𝑔𝑦 to grid
11: end if
12: else if 𝑝𝑣_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑙𝑜𝑎𝑑_𝑑𝑒𝑚𝑎𝑛𝑑 then
13: Use battery to meet 𝑙𝑜𝑎𝑑_𝑑𝑒𝑚𝑎𝑛𝑑
14: end if
15: end while

The adoption of the TOU strategy is aimed at achieving economic
ains through the utilization of the price variation between peak and
ff-peak electricity rates. The primary objective of the TOU strategy
harge the battery during the valley price period and subsequently
ischarge the stored electricity to meet load demand during high/peak
eriods. In addition, the TOU strategy charges the battery at the highest
ossible rate from the grid during the off-peak period (23:00-7:00 the
ollowing day). In instances of peak prices, the battery is discharged to
ulfill the energy demand of the farm when load demand exceeds the
apacity of the photovoltaic generation. The pseudocode of the TOU
5

trategy is presented in the Algorithm 2. a
Algorithm 2 TOU Strategy for Battery Management
1: Define 𝑝𝑒𝑎𝑘_ℎ𝑜𝑢𝑟𝑠, 𝑜𝑓𝑓 _𝑝𝑒𝑎𝑘_ℎ𝑜𝑢𝑟𝑠, 𝑡𝑜𝑡𝑎𝑙_𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠
2: Initialize 𝑝𝑣_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝑙𝑜𝑎𝑑_𝑑𝑒𝑚𝑎𝑛𝑑, 𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦,

𝑡𝑜𝑡𝑎𝑙_𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠, 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦_𝑝𝑟𝑖𝑐𝑒𝑠
3: while 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1 to 𝑡𝑜𝑡𝑎𝑙_𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 do
4: Update 𝑝𝑣_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝑙𝑜𝑎𝑑_𝑑𝑒𝑚𝑎𝑛𝑑, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒
5: if In off_peak_hours and battery not full then
6: Charge battery from grid at max rate
7: end if
8: if 𝑝𝑣_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 > 𝑙𝑜𝑎𝑑_𝑑𝑒𝑚𝑎𝑛𝑑 then
9: Store excess PV in battery

10: end if
11: if In 𝑝𝑒𝑎𝑘_ℎ𝑜𝑢𝑟𝑠 and 𝑙𝑜𝑎𝑑_𝑑𝑒𝑚𝑎𝑛𝑑 > 𝑝𝑣_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 then
12: Use battery to meet shortfall
13: end if
14: end while

3.4. Q learning

This paper utilizes the Q-learning approach which is an effective RL
technique for efficient battery management used by various researchers
as described in the literature. The Q-learning algorithm operates by
choosing the action that corresponds to the maximum Q-value in each
state. Eq. (3) illustrates the maximum Q-value selection strategy.

𝑄∗(𝑠𝑡, 𝑎𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴𝑄
𝜋 (𝑠𝑡, 𝑎𝑡) (3)

The symbol 𝑄∗(𝑠𝑡, 𝑎𝑡) denotes the optimal action that maximizes the
ction-value function 𝑄𝜋 (𝑠 , 𝑎 ) at time 𝑡, with respect to the state 𝑠 .
𝑡 𝑡 𝑡
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The mathematical symbol 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴 denotes the maximum value of
the action-value function across the set of all possible actions belonging
to the action space 𝐴, given the state 𝑠𝑡. The aforementioned statement
implies that the optimal value of the action, denoted by 𝑄∗(𝑠𝑡, 𝑎𝑡),
esults in the maximum reward for the agent in the state 𝑠𝑡.

Q-learning algorithms employ the Bellman equation [49] to choose
aximum Q-values and the generalized Bellman equation is expressed

n Eq. (4).

𝜋 (𝑠, 𝑎) =
∑

𝑠′ ,𝑟
𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾

∑

𝑎′
𝜋(𝑎′|𝑠′)𝑄𝜋 (𝑠′, 𝑎′)] (4)

Eq. (4) presents the correlation between the action-value function
𝑄𝜋 , the reward, and transition probabilities of the environment. The
statement specifies that the value of 𝑄𝜋 (𝑠, 𝑎) is equivalent to the sum-
mation of the probability 𝑝(𝑠′, 𝑟|𝑠, 𝑎) of transitioning to state S′ and
receiving reward R, multiplied by the summation of the immediate
reward R and the discounted value of the subsequent state S′ under
the policy 𝜋, considering all feasible next states S′ and rewards R.
The parameter 𝛾, commonly referred to as the discount factor, plays
a crucial role in determining the relative significance of rewards that
are obtained immediately versus those that are obtained in the future.
The Bellman equation is a fundamental concept within the field of RL,
used for numerous algorithms that aim to acquire knowledge regarding
the value function and policy optimization.

Q-learning involves using the current estimate of 𝑄𝜋 to improve
its future predictions by including the known reward value 𝑟(𝑠𝑡, 𝑎𝑡).

-learning fundamentally relies on the concept of Temporal Differ-
nce (TD) learning [50]. In this method, the Q-value is updated after
erforming an action in the state 𝑆𝑡 and observing the resulting re-
ard 𝑟𝑡 which leads to a transition to the next state 𝑠𝑡+1. The TD is
athematically represented in Eq. (2).

Empirical evidence supports the notion that as the frequency of
isits to each state–action pair’s Q-value approaches infinity, the learn-
ng rate 𝛼 exhibits a decreasing trend concerning the time step t . As
he value of t approaches infinity, the function 𝑄(𝑠; 𝑎) approaches the
ptimal 𝑄 ∗ (𝑠; 𝑎) for all possible state–action pairs [11]. In this study,
he Q-learning algorithm was utilized to optimize the management
f battery charging and discharging operations to reduce the cost of
mported electricity from the power grid. The Q-learning algorithm
omprises different components, namely the state space denoted as 𝑆,
he action space represented by 𝐴, and the reward function, which is
he aggregate cost of electricity denoted as 𝑅.

.5. Application of Q-learning to battery management

In this study, Q-learning is employed as a means of effectively
anaging the process of battery charging and discharging. This is

chieved through the exploration of the state space and action space,
hich are integral components of the environment. The reward is cal-

ulated by considering various actions, such as charging, discharging,
r remaining idle, in response to factors such as renewable generation
nd electricity prices. The state space, action space, and reward are
xplained below. The proposed algorithm is illustrated in the flow chart
hown in Fig. 4. The algorithm begins by initializing the environment,
pecifying the available actions, defining a strategy for computing
ewards, and determining the number of episodes. Subsequently, it
nitializes the learning rate and exploration rate to 0.8, the discount
actor to 0.9, and initializes the Q Table to 0. The algorithm employs
he weight decay with the decay of 0.0001 to gradually decrease
he learning rate and exploration rate concerning the episodes. To
etermine the appropriate action, the algorithm uses the epsilon-greedy
olicy.
6

m

Fig. 4. Flow chart of the proposed algorithm.

3.5.1. State space (S)
This study incorporates two state variables, namely the time com-

ponent denoted as ℎ𝑜𝑢𝑟 and the battery charge component denoted as
𝑆𝑂𝐶. Eq. (5) illustrates the state space for the battery management
environment.

𝑆 = {ℎ𝑜𝑢𝑟, 𝑆𝑂𝐶} (5)

The temporal component ℎ𝑜𝑢𝑟 represents the hour of day which
allows the learning agent to learn about dairy farm load consumption
and PV energy generation. 𝑆𝑂𝐶 represents battery State of Charge
(SOC) controllability. In this study, SOC was divided into ten bins,
ranging from 0 to 9. Each bin corresponds to a 10% increment of the
battery charge, effectively discretizing the state space of the battery
management environment. This approach is taken to ensure that the
distribution of SOC is evenly distributed and simplifies the complexity
of the environment, making it more effective for analysis. SOC is
represented as 𝑆𝑂𝐶 = 𝑆𝑂𝐶𝑐∕𝑆𝑂𝐶𝑚𝑎𝑥. The 𝑆𝑂𝐶𝑐 represents the battery
harge at the current timestamp and 𝑆𝑂𝐶𝑚𝑎𝑥 represents the battery
aximum capacity.
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3.5.2. Action space (A)
This study examines a set of three actions, namely charging,

discharging, or remaining idle, represented as 𝐴 = {𝑐ℎ𝑎𝑟𝑔𝑒, 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,
𝑖𝑑𝑙𝑒}, where an action 𝐴 = 𝑐ℎ𝑎𝑟𝑔𝑒, representing the charging of the
attery using PV, and from the local utility grid. If 𝐴 = 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
ischarge the battery when necessary to meet some or all of the energy
equirements. In cases where the energy provided by the PV system and
he battery is insufficient, it may be necessary to purchase additional
ower from the grid. If 𝐴 = 𝑖𝑑𝑙𝑒, the battery is in an idle state and
he dairy farm is powered via solar PV and the grid. For selecting the
ction the Epsilon greedy policy is used.

In reinforcement learning, the epsilon-greedy policy is an approach
hat is often used with the Q-learning algorithm. It is the policy that
elps the agent select an action in a specific state by using exploration
nd exploitation methods. In exploration, the agent chooses an action
andomly without using previous knowledge of the environment, but in
xploitation, the agent chooses the action using previous knowledge.
he agent decides on the exploration based on the value of 𝜖, which
anges from 0 to 1. If 𝜖 = 0.1, then there is a 10% chance that the
gent will explore the state and take random action on that state.

.5.3. Reward (𝑅)
The reward function, denoted as 𝑅, is computed as the cost of

lectricity imported from the grid and the electricity price at that hour.
q. (6) represents the detailed mathematical formulation to calculate
he reward for the battery management environment

=

⎧

⎪

⎨

⎪

⎩

−((𝑃𝑑𝑒𝑚 + (𝛽 − 𝑃𝑝𝑣)) × 𝑃𝑒) − 𝑃𝑐 if 𝐴 = 𝑐ℎ𝑎𝑟𝑔𝑒
−(((𝑃𝑑𝑒𝑚 − 𝑃𝑝𝑣) − 𝛾) × 𝑃𝑒) − 𝑃𝑑 if 𝐴 = 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
−((𝑃𝑑𝑒𝑚 − 𝑃𝑝𝑣) × 𝑃𝑒) − 𝑃𝑖 if 𝐴 = 𝑖𝑑𝑙𝑒

(6)

In Eq. (6) 𝑅 represents the reward obtained at time 𝑡, 𝑃𝑝𝑣 denotes the
total power generated by the solar panels at time 𝑡, 𝑃𝑑𝑒𝑚 represents the
demand of the electricity by the dairy farm, 𝛽 represent the charge rate
at which battery is charged. 𝛾 represents the discharge rate at which
he battery is discharged in kW, and 𝐴 represents the action taken at
ime 𝑡, which can be either charge, discharge, or idle. 𝑃𝑒 represents the
rice of electricity at the current time. The 𝑃𝑐 represents the penalty

amount by which the agent is penalized if it charges the battery under
certain rules, 𝑃𝑑 is the penalized amount when the agent selects an
action to discharge the battery, and 𝑃𝑖 is the amount of penalty when
gent selects an action idle. The formulations of the penalized terms,
hich are applied based on the actions taken by the agent, are outlined

n Eqs. (7), (8), and (9).

𝑐 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−15 if 𝑆𝑂𝐶𝑐 ≥ 𝑆𝑂𝐶max and hour == peak hours
−10 if 𝑆𝑂𝐶𝑐 ≥ 𝑆𝑂𝐶max

−10 if hour == peak hours
+5 if hour == off-peak hours

(7)

Eq. (7) explains how penalties are calculated when an agent chooses
n action charge. This penalty depends on the battery’s current state of
harge (𝑆𝑂𝐶𝑐 ) and the time of day. If the agent charges an already
ull battery (𝑆𝑂𝐶𝑚𝑎𝑥), it gets penalized. A penalty of −15 is applied if
he agent charges during peak electricity price hours and the battery is
ully charged. The agent is penalized a penalty of −10 in two scenarios:
irst, if it charges the battery during off-peak hours when the battery is
lready fully charged, and second if it charges the battery during peak
lectricity hours. Contrarily, the agent gets a penalty of +5 for favorable
ctions like charging the battery at night when electricity prices are
ower.

𝑑 =

⎧

⎪

⎨

⎪

⎩

−10 if 𝑆𝑂𝐶𝑐 ≤ 𝑆𝑂𝐶min

−5 if hour == off-peak hours
+5 if hour == peak hours and if 𝑆𝑂𝐶𝑐 > 𝑆𝑂𝐶min

(8)
7

Eq. (8) explains how penalties are calculated for discharging the
battery. This penalty varies based on the battery’s current state of
charge (𝑆𝑂𝐶𝑐 ) and the time of day. The agent faces a penalty of −10 if
it discharges the battery below its minimum charge level (𝑆𝑂𝐶𝑚𝑖𝑛). A
penalty of −5 is applied if the battery is discharged during off-peak
times. However, discharging during peak hours periods results in a
reward of +5 if the battery charge is more than the battery’s minimum
level.

𝑃𝑖 =
{

−10 if 𝑆𝑂𝐶𝑐 ≥ 𝑆𝑂𝐶min and hour == peak hours (9)

Eq. (9) outlines the penalty for the agent when it selects the ‘‘Idle’’
action. This penalty depends on the battery’s current state of charge
(𝑆𝑂𝐶𝑐 ) and the time of day. To encourage more usage of battery power,
a penalty of −10 is imposed during peak hours if the battery’s charge
level is above the minimum level.

The proposed Q-learning algorithm for battery management in dairy
farming is presented in Algorithm 3.

Algorithm 3 Battery Management using Q-learning
1: Initialize 𝑑𝑎𝑦𝑠, ℎ𝑜𝑢𝑟𝑠, 𝑚𝑎𝑥𝑆𝑂𝐶, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒, 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡_𝑓𝑎𝑐𝑡𝑜𝑟,

𝑒𝑝𝑠𝑖𝑙𝑜𝑛, 𝑑𝑒𝑐𝑎𝑦, 𝑠𝑡𝑒𝑝𝑠_𝑝𝑒𝑟_𝑒𝑝𝑖𝑠𝑜𝑑𝑒, 𝑡𝑜𝑡𝑎𝑙_𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠
2: Initialize 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 ← {’charge’, ’discharge’, ’idle’}
3: Initialize 𝑄_𝑡𝑎𝑏𝑙𝑒[ℎ𝑜𝑢𝑟𝑠][𝑚𝑎𝑥𝑆𝑂𝐶 + 1][len(𝑎𝑐𝑡𝑖𝑜𝑛𝑠)] ← 0
4: for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1 to 𝑡𝑜𝑡𝑎𝑙𝐸𝑝𝑖𝑠𝑜𝑑𝑒𝑠 do
5: ℎ𝑜𝑢𝑟 ← 1
6: 𝑆𝑂𝐶 ← random between 1 and 10
7: while 𝑠𝑡𝑒𝑝𝑠_𝑝𝑒𝑟_𝑒𝑝𝑖𝑠𝑜𝑑𝑒 do
8: Choose 𝑎𝑐𝑡𝑖𝑜𝑛 from 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 using 𝜖-greedy policy
9: Take 𝑎𝑐𝑡𝑖𝑜𝑛, observe 𝑟𝑒𝑤𝑎𝑟𝑑, 𝑛𝑒𝑤_ℎ𝑜𝑢𝑟, 𝑛𝑒𝑤_𝑆𝑂𝐶
0: 𝑄_𝑣𝑎𝑙𝑢𝑒 ← 𝑄_𝑡𝑎𝑏𝑙𝑒[ℎ𝑜𝑢𝑟][𝑆𝑂𝐶][index of 𝑎𝑐𝑡𝑖𝑜𝑛]
1: 𝑛𝑒𝑥𝑡_𝑄_𝑣𝑎𝑙𝑢𝑒 ← max(𝑄_𝑡𝑎𝑏𝑙𝑒[𝑛𝑒𝑤_ℎ𝑜𝑢𝑟][𝑛𝑒𝑤_𝑆𝑂𝐶])

12: 𝑄_𝑡𝑎𝑏𝑙𝑒[ℎ𝑜𝑢𝑟][𝑆𝑂𝐶][index of 𝑎𝑐𝑡𝑖𝑜𝑛] ← 𝑄_𝑣𝑎𝑙𝑢𝑒 +
𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 × (𝑟𝑒𝑤𝑎𝑟𝑑 + 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡_𝑓𝑎𝑐𝑡𝑜𝑟 × (𝑛𝑒𝑥𝑡_𝑄_𝑣𝑎𝑙𝑢𝑒−𝑄_𝑣𝑎𝑙𝑢𝑒))

13: ℎ𝑜𝑢𝑟, 𝑆𝑂𝐶 ← 𝑛𝑒𝑤_ℎ𝑜𝑢𝑟, 𝑛𝑒𝑤_𝑆𝑂𝐶
14: end while
15: 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ← max(𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 − 𝑑𝑒𝑐𝑎𝑦, 0.1)
16: 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ← max(𝑒𝑝𝑠𝑖𝑙𝑜𝑛 − 𝑑𝑒𝑐𝑎𝑦, 0.1)
17: end for

Algorithm 3 describes a Q-learning method specifically designed
for battery management in dairy farming. It initializes Q-values for
each state–action pair and then iterates through one million episodes.
Within each episode, the algorithm selects an action based on a policy
derived from the Q-values, such as the 𝜖-greedy strategy. After choosing
an action, it observes the reward and the next state that results from
that action. The algorithm then updates the Q-value for the current
state–action pair. Then algorithm uses the weight decay method to
decrease the exploration and learning rate with respect to the number
of episodes and set it to a minimum of 0.1. Finally, it repeats the process
for all episodes.

3.6. Experimental setup

This research evaluates the proposed Q-learning algorithm for bat-
tery management through a series of experiments.

1. Experiment 1 involves testing and training the Q-learning algo-
rithm on the Finland dairy farm electricity data.

2. Experiment 2 incorporates Finland wind data for a more detailed
evaluation of the algorithm.

3. Experiment 3 tests the performance of the algorithm by explor-
ing the state space.

4. Experiment 4 applies the algorithm to the Irish dairy farm data.
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Fig. 5. Comparison of the electricity load and cost imported from the power grid by using rule-base and Q-learning on Finland dataset.
The goal of these experiments is to assess the algorithm’s effec-
iveness in different scenarios, involving parameter adjustments, data
nalysis, and comparative studies. These experiments aim to demon-
trate the algorithm’s robustness and potential for optimizing dairy
arm energy use.

. Results and discussion

.1. Q-learning for battery management

In this scenario, the Q-learning algorithm was trained to enhance
he efficiency of battery management in dairy farming. Its primary goal
s to increase the use of PV energy while reducing dependence on the
xternal power grid and to lower energy cost in the dairy farm. This
lgorithm was trained on one year’s data from Finland [43]. The trained
lgorithm learned the optimal policy for charging the battery, dis-
harging, and remaining idle, considering state information on battery
harge level, time, and energy prices. After training, the algorithm’s
erformance was tested on the same dataset for one year. The findings
ndicate that the implementation of the Q-learning algorithm decreases
he import of electricity by 10.64%. In comparison, the baseline strat-
gy resulted in a decrease in electricity imports only by 9.72%. This
mprovement in the reduction of electricity imports from the grid is
resented in Fig. 5, demonstrates the algorithm’s effectiveness.

Fig. 5 shows a comparison of total electricity imported from the
rid and the associated cost of the electricity in each month of the
ear. The 𝑥-axis shows the time in months, while the 𝑦-axis on the left
ide indicates the total electricity imported from the grid while the 𝑦-

axis on the right side demonstrates the cost of the electricity imported.
The graph shows two distinct bars representing: electricity imported
from the grid using three methods each marked with a different color;
and the cost of the imported electricity by comparing it with three
methods, each depicted in a different color. This illustration offers a
clear insight into how different energy management strategies affect
the overall consumption of electricity and reliance on the grid. The Q-
learning effectively reduced electricity imports by 10.64% and cost by
13.41% as compared to the baseline algorithm which reduces electricity
import by 9.72% and cost by 12.73%. These results highlight the
effectiveness of Q-learning in optimizing energy usage compared to
rule-based battery management and without battery management in
8

reducing grid dependency.
Fig. 6 illustrates a comparison of battery charging behaviors
throughout a day using two methodologies: baseline and Q-learning.
Additionally, it displays electricity price, consumption, PV, and wind
generation data for the first day of the year. The 𝑥-axis represents the
hours of the day, while the 𝑦-axis indicates the battery and electricity
profiles on the farm. This comparison highlights differences in battery
charging and discharging behaviors between the two methodologies.
The Q-learning method demonstrates enhanced battery management,
with results indicating an optimal policy for charging and discharging.
Specifically, when it charges the battery during periods of low elec-
tricity prices and available PV and wind generation, maximizing the
utilization of renewable energy sources. Conversely, during peak hours
when electricity prices are high, the Q-learning algorithm discharges
the battery. In contrast, the rule-based method follows a more static
approach, based on predetermined rules while Q-learning is adaptive
to the current environment. This adaptability allows for more effective
optimization of the battery charging and discharging, aligning with
fluctuating energy demands and variable PV and wind generation,
leading to enhanced efficiency and cost savings for the dairy farm.

The peak demand metric is calculated to determine the benefit of
Q-learning in terms of its impact on the grid. The algorithm achieved
a 2% reduction in peak demand when using battery management,
which is crucial for reducing load from the power grid and reducing
the electricity cost in the dairy farm. This reduction, illustrated in
Fig. 7, compares the peak demand load imported from the grid using
Q-learning and without battery management in the month for 1 year,
emphasizing the algorithm’s effectiveness during periods of peak de-
mand. This significant reduction is particularly important for practical
energy management to reduce electricity demand during periods of
peak demand.

4.2. Battery management with wind generation

This study investigates the impact of wind energy on the efficacy of
the Q-learning algorithm, utilizing the Finland dataset which captures
wind generation metrics. The Q-learning algorithm was trained for a
total of one million episodes utilizing wind data, in addition to solar
data and a load demand from a farm over one year. After training the
algorithm performance is evaluated on the data. The objective of this
experiment is to assess the efficacy of Q-learning in energy management

by incorporating both wind and solar sources.
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t

Fig. 6. Comparison of the battery charging and discharging by using TOU and Q-learning.
Fig. 7. Comparison of the reduction of the peak demand on the grid.
Fig. 8, shows a comparison between the electricity imported from
he grid by utilizing wind energy and without wind energy. The 𝑥-axis

of the figure represents the months of the year, while the vertical axis
represents the electricity imported from the grid. The figure shows that
the utilization of wind energy resulted in a decrease of 22.14% in the
import of grid electricity, in comparison to 10.64% generated without
wind energy.

The findings of the experiment demonstrate that incorporating wind
energy through the utilization of the Q-learning algorithm leads to
significant reductions in the cost of imported electricity. The reductions
using wind energy reduce electricity cost by 24.49% compared to
13.41% reduced without wind energy. By integrating wind energy,
9

the algorithm comprehensively reduces electricity import from the
grid during the winter period because the wind generation is high
in comparison to the PV generation due to wind storms. In summer
periods the wind is not too high which affects the performance of
the algorithm. The above-mentioned results show the efficiency of the
Q-learning algorithm for battery management and the reduction of
imported electricity from the grid when wind energy is incorporated.

4.3. Investigating state space

In this experiment, we explore the impact of expanding the state
space on the performance of the Q-learning algorithm, initially de-
veloped in Experiment 4.1. The state space of the first experiment is
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Fig. 8. Comparison of the electricity load imported from the power grid by using Q-learning without wind and with wind energy.
Fig. 9. Comparison of electricity import reduction percentage with different state space.
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epicted in Eq. (5). The load demand and PV generation were used in
he reward function to calculate the reward.

In this investigation, the load and PV generation are incorporated
nto the state space of the Q-learning algorithm. The purpose of this
s to observe how the algorithm’s performance is affected when these
ariables are part of the state space, instead of using them to calculate
eward. The formulation of this modification is depicted in Eq. (10).

= {ℎ𝑜𝑢𝑟, 𝑆𝑂𝐶, 𝑙𝑜𝑎𝑑, 𝑃𝑉 } (10)

To further explore the algorithm’s adaptability and efficiency, we
xpanded the state space to include wind data information. Exploration
ims to see how dynamic state space affects the adaptability and
fficiency of the algorithm. Also, to see how dynamic state space affects
he algorithm learning and decision-making capabilities when wind
eneration data is added to the state space for the battery management
ystem. The state space for this extended approach, incorporating wind
ata, is presented in Eq. (11).

= {ℎ𝑜𝑢𝑟, 𝑆𝑂𝐶, 𝑙𝑜𝑎𝑑, 𝑃𝑉 ,𝑤𝑖𝑛𝑑} (11)

The Q-learning algorithm is trained and tested with different state
10

paces including scenarios with and without wind generation data.
ig. 9 compares the algorithm’s performance across these different state
paces. Fig. 9(a) shows how the inclusion of load and PV generation
n the state space affects electricity import reduction, compared to
he state space from experiment 4.1. We found that the state space
rom experiment 4.1 is more effective, reducing electricity imports
y 10.64%, compared to the modified state space (with load, and
V) which only achieved a 9.97% reduction. Fig. 9(b) illustrates the
mpact of incorporating wind generation data into the state space.

hen the state space from Experiment 4.1 is combined with load
emand, PV generation and wind data, then there is a smaller reduction
n load import, achieving a 10.07% decrease. In contrast, state space
rom Experiment 4.1 with wind generation data results in a significant
eduction of 22.14%. This shows that expanding the state space adds
o the complexity of the environment, which makes it difficult for the
-learning agent to make optimal decisions. Another reason for this

ncapability could be due to the curse of dimensionality in Q-learning,
here increasing dimensionality leads to sparser data and challenges

n achieving expected results [50]. Additionally, discretizing the state
pace to manage its dimensionality might have affected performance
ue to variations in the data.
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Fig. 10. Comparison of the electricity import reduction percentage on Finland and Ireland data using Q-learning.
.4. Irish dairy farm case study

In this study, we applied the Q-learning algorithm, originally de-
eloped in Experiment 4.1, to the context of Irish dairy farms. The
rimary objective was to test the algorithm’s adaptability using a
ataset collected specifically for Ireland. We focused on analyzing
lectricity consumption and PV energy generation patterns. The main
oal of this experiment was to evaluate the efficacy of the Q-learning
lgorithm in adapting to new data patterns, aiming to optimize battery
cheduling and decrease reliance on the electricity grid.

The comparison of the percentage of electrical load imported from
he grid using Q-learning, based on datasets from Finland and Ireland,
s illustrated in Fig. 10. The figure illustrates that the algorithm shows
etter results in reducing electricity import percentages when applied
o the Finland data as compared to the Ireland data. This difference
s because the algorithm was trained on the Finland dataset, allowing
t to learn and adapt to its specific patterns of electricity consumption
nd PV generation. In contrast, the Ireland dataset represents a new
nvironment with variations in consumption and generation patterns,
hich is a new environment for the algorithm in exploring states and
eciding on charging and discharging actions. To provide a compre-
ensive overview of the results of this experiment, we have detailed
he results for both Ireland and Finland data in Table 1, comparing the
roposed algorithm with a baseline algorithm.

Table 1 shows a comparison of the performance between the base-
ine method and the Q-learning approach. It highlights the Q-learning
lgorithm’s capability in effectively lowering imported grid load and
elated cost. Specifically, the Q-learning algorithm reduces electricity
mport on Ireland data by 6.7%, an improvement over the baseline’s
lgorithm which reduces by 5.54%. Additionally, the cost associated
ith the load was reduced by up to 9.37% in comparison with the
11

aseline which was reduced by 8.50%. This comparison showed the
Table 1
Comparison of load and cost reductions for Q-learning and Rule-Base algorithms on
Finland and Ireland datasets.

Country Rule-based Q-learning

Load(%) Cost(%) Load(%) Cost(%)

Finland 9.72 12.73 10.64 13.41
Ireland 5.54 8.50 6.70 9.37

adaptability of the Q-learning algorithm in optimizing electricity load
and the cost associated with it.

5. Conclusion

In this research, Q-learning is applied to battery management in a
dairy farm, using electricity data from Finland. This study involved var-
ious experiments to assess the effectiveness of the Q-learning algorithm.
This research explored the effect of integrating wind and solar data
on battery management and examined how changing the state space
of the algorithm impacts its performance. Additional experiments were
conducted using data from Ireland to validate the effectiveness of the
algorithm. As explained in Section 4, the findings show that the Q-
learning algorithm successfully reduced the reliance of the dairy farm
on the external grid.

Below are the main findings of this research:

1. This research utilized Q-learning to manage battery energy in
dairy farms, resulting in efficient scheduling of battery loads.
The implementation of this strategy resulted in a significant
decrease of 13.41% in the cost of electricity imported from
the grid and a reduction in peak demand of 2%. This shows
the proposed strategy’s potential to address energy management
within the context of dairy farming effectively.
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2. The Q-learning algorithm, when applied to wind data integrated
with solar data, demonstrated impressive results, achieving a
substantial reduction in imported electricity cost by 24.49%.
This emphasizes the algorithm’s effectiveness in managing bat-
teries efficiently when wind-generated energy is incorporated
with solar energy.

3. Exploring different state spaces in the Q-learning algorithm led
to a reduction in electricity import cost. Different experiments
were conducted by expanding state space to see the expand-
ability and adaptability of the algorithm. This improvement
highlights the impact of modifying state spaces on battery man-
agement in dairy farming when using a Q-learning algorithm.

4. Testing the Q-learning algorithm on the Ireland dataset sig-
nificantly decreased electricity imports from the grid, with a
notable reduction of 6.7% compared to the 5.54% achieved
with the baseline approach. The outcome shows the Q-learning
algorithm’s adaptability and effectiveness when applied to data
from various regions.

In the future, we intend to employ DRL algorithms to address the
hallenge of state space expansion. Deep Learning techniques are well-
uited for handling complex problems, and by integrating them, we
im to enhance the model’s ability to handle complex state space. This
trategy will enhance performance by decreasing dependence on the
xternal grid.
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