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Movie genre prediction from trailers is mostly attempted in a multi-modal manner. However, the characteristics

of movie trailer audio indicate that this modality alone might be highly effective in genre prediction. Movie

trailer audio predominantly consists of speech and music signals in isolation or overlapping conditions. This

work hypothesizes that the genre labels of movie trailers might relate to the composition of their audio

component. In this regard, speech-music confidence sequences for the trailer audio are used as a feature.

In addition, two other features previously proposed for discriminating speech-music are also adopted in

the current task. This work proposes a time and channel Attention Convolutional Neural Network (ACNN)

classifier for the genre classification task. The convolutional layers in ACNN learn the spatial relationships

in the input features. The time and channel attention layers learn to focus on crucial time steps and CNN

kernel outputs, respectively. The Moviescope dataset is used to perform the experiments, and two audio-based

baseline methods are employed to benchmark this work. The proposed feature set with the ACNN classifier

improves the genre classification performance over the baselines. Moreover, decent generalization performance

is obtained for genre prediction of movies with different cultural influences (EmoGDB).
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1 INTRODUCTION
Automatic movie recommendation is an important application that lets viewers easily find their

content of interest. Different approaches have been explored for providing movie recommendations

to users. Some methods exploit knowledge of public sentiment from microblogging site data to

generate recommendations [1]. Few other approaches use the preference of viewers for specific

actors or directors to provide suggestions [2]. Nevertheless, movie recommendation based on

preferred genres is arguably the most popular approach [2]. Genre labeling is a complicated task
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since movies can belong to multiple genres. Manual labeling may lead to inaccurate or incomplete

labels due to the subjective bias of the annotators. Therefore, efficient automatic determination of

movie genres is essential for providing valuable recommendations.

Genre classification of short movie trailers (≈ 3 minutes) has attracted many researchers. Movie

trailers are designed in a particular manner so that different emotional responses may be evoked

in the viewers [3]. Trailers usually contain rich and varied content that represents the theme of

the actual movie. An automatic tool to efficiently determine the probable genres in a movie from

its trailer can be beneficial. Viewers might make use of this information in deciding what movie

to watch. On the other hand, content creators and distributors might utilize this information for

targeted publicity.

1.1 Related work
Researchers have explored various approaches to perform the task of movie genre classification

in the past. One of the pioneering works was performed by Rasheed et al. [4] to classify movie

previews into multiple hierarchical genres (action and non-action movies) using audio-visual

features. They used the peakiness in the audio energy plot as one modality. In [5], they followed

up by performing movie preview or trailer classification into comedy, action, drama or horror

genres using only low-level visual features and mean-shift clustering. Wang et al. [6] proposed

the use of psychology and cinematographic information for affective understanding of movies to

bridge the semantic gap between low-level audio-visual features and high-level emotions. Jain et

ak. [7] used early-fusion of audio features like pitch, frequency domain energy and Mel-Frequency

Cepstral Coefficients (MFCC), and visual features with a feed-forward neural network to classify

movies into action, horror, comedy, music and drama genres. Austin et al. [8] proposed to

categorize movies into romance, drama, horror, and action genres using their musical scores.

The authors used timbral (MFCC, LPC, ZCR, and other standard spectral features) and rhythm

(tempo, beat) features with SVM classifiers to perform pair-wise and four-class classification of

genres. Giannakopoulos et al. [9, 10] performed Violent Scene Detection (VSD) by fusing audio-

visual features. They used 12 standard audio features including MFCC for the task. They performed

an early fusion of audio-based and video-based probability vectors with a k-Nearest Neighbour

classifier to determine violent scenes. Irie et al. [11] performed affective scene classification using

audio-visual features that included pitch, short-term energy, and MFCC. Souza et al. [12] performed

VSD using local spatiotemporal features with a bag of visual words and a linear SVM classifier. Bag

of words features refer to a representation where the order of elements is ignored, and the focus is

on the frequency of individual elements within a given dataset. Zhou et al. [13] performed movie

trailer genre classification by using category information of all shots in a trailer as a bag of visual

words features to map the trailers into action, comedy, drama or horror genres. Chen et al. [14]

performed VSD by first detecting an action scene, and then categorizing it as a horror scene using

face, blood, and motion information. Wang et al. [15, 16] performed horror scene detection using

Multiple Instance Learning with visual and aural features that included MFCC, power, spectral

centroid, and Zero-Crossing Rate (ZCR) for each scene computed in the form of a bag of shots.

Huang et al. [17] performed movie genre classification using an ensemble of one-vs-one Radial Basis

Function kernel SVM classifiers with a combination of audio features like spectrum compactness,

root-mean-square energy, ZCR, linear prediction coefficients, MFCC, and rhythm, along with visual

features. Acar et al. [18] showed that mid-level audio features in the form of a bag of audio words

of MFCC features performed better than low-level audio and visual features in VSD.

More recently, Simoes et al. [19] performed movie genre classification using MFCC and visual

features with a Convolutional Neural Network (CNN) classifier. Authors observed that audio features

improve the performance of all genres, especially the comedy genre. Tadimari et al. [20] performed
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movie genre classification using a linear-SVM classifier with audio-visual features. Wehrmann et

al. [21] performed movie genre classification using an ensemble of classifiers trained on different

audio-visual features including MFCC. In this work and their subsequent works [22, 23], authors

observed that the detection of horror genre is significantly improved with the addition of audio

information. Tarvainen et al. [24] observed that detecting the amount of speech and music in movie

audio is very useful for scene detection. Hence, they used music emotion as an additional feature

with image features for the acoustic scene classification of movies into categories like interior or

exterior, and day or night. Alvarez et al. [25] performed aesthetic style clustering of movies and

genre classification and observed that the inclusion of audio features with visual improved genre

classification performance. Cascante-Bonilla et al. [26] performed genre classification of movie

trailers usingmultiple modalities of text, video, audio, posters, andmeta-data. For the audiomodality,

log-Mel scaled power spectrograms computed from 30s audio chunks are stacked and passed to a

Convolutional Recurrent Neural Network (CRNN) for classification. The various modalities were

combined using score-fusion for the final prediction. They also noted that the addition of audio

modality significantly improved the overall performance. Chu et al. [27, 28] proposed a genre

classification system using movie posters. Shambharkar et al. [29] performed genre classification

using 3𝐷-CNN over stacks of video frames. Mangolin et al. [30] combined information from audio,

video frames, posters, subtitles, and synopsis in a late-fusion framework for multi-label genre

classification of movie trailers using Binary Relevance and Multi-Label k-NN classifiers. Yadav et

al. [3] attempted to classify the genres of movie trailers from Indian cinema. Authors extracted facial

frames from the movie trailers and mapped them to various emotions for use as a feature for genre

classification. They proposed an Inception-Long Short-Term Memory-based classification system.

Fish et al. [31, 32] defined the genre classification task as a weak-labeling method and proposed a

multi-label context-gated approach. Audio embeddings used in their method were obtained from a

VGG-style network trained for audio classification [33], that are temporally aggregated using a

network called NetVLAD [34]. Authors observed that audio modality performed best in detecting

comedy and sports genres. Sharma et al. [35] used only the audio modality and followed a bag of

audio words-based approach to classify movie trailers into action, romance, horror, sci-fi, and

comedy genres. Authors observed that action genre is best detected with their proposed method.

Vishwakarma et al. [36] performed genre classification of movie trailers by extracting high-level

cognitive and affective information obtained from multiple modalities of visual images, dialogues,

and movie meta-data.

Based on the above discussion, it is obvious that there is a bias in the existing literature towards

using the visual modality in the Movie Trailer Genre Classification (MTGC) task. However, despite

the popularity of visual modality in the MTGC task, the audio component has also been useful [23].

The auditory stream is a richmedium for provoking various emotions [6]. The affective characteristic

is said to be better captured by audio than video [37]. Some specific sounds and music are frequently

used by movie editors to elicit specific emotional responses and to promote dramatic effects [15].

Audio information has also been found to aid in better detection of violent scenes [38]. Music used

in movies of high-intensity genres like action and horror has very distinct characteristics from

those with softer emotional expressions, like drama and romance [8].

Speech, music, and sound effects are the audio types frequently found in almost all movie

scenes [39]. Researchers have observed that speech and music are more beneficial in predicting

movie genres. Tarvainen et al. [24] mentioned that the prominence of speech and music alone

might be enough to classify scenes in movie audio. Dialogues and environmental sounds are

assumed to lack genre-specific information [31]. Wang et al. [6] also observed that environmental

sounds are less helpful than speech and music in identifying emotions. In addition, sound effects or

environmental sounds are sparsely distributed. At the same time, speech and music are the most
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(a)

(b)

Fig. 1. Illustrating average genre-wise distribution of music (a) and speech (b) probability sequences computed
for the movie trailers in the Moviescope dataset. These sequences are obtained by employing a speech vs.
music classifier to predict the class-wise probabilities of consecutive non-overlapping 1s intervals in the trailer
audio of movies.

significant components of movie trailers. Therefore, this work explores the usefulness of information

about the most prominent audio types in movie trailers (speech and music) for genre classification.

Genre-wise music and speech signals distribution in the Moviescope dataset is illustrated in Fig. 1.

It can be observed from the figure that the frequency of speech and music varies across genres.

For example, Comedy and Romance genres are associated with more speech and less music. The

opposite is observed for Horror and Action. Such observations indicate that just the speech and

music information might be adequate for movie genre classification.

1.2 Motivation
This work explores the audio modality of movie trailers for performing genre classification and

analyzes its possibilities. Motivation for this work is derived from the fact that different audio types

are naturally suited to provoke varied emotions [6]. Thus, the auditory stream of movie trailers has

the potential to be a rich source of information for performing the task of movie genre classification.

There are a few works that have performed audio classification as an intermediate step of MTGC

using only basic audio features like Mel Frequency Cepstral Coefficients (MFCC) [9]. However,

such features can be expected to perform poorly in the presence of noise and background music

commonly found in movie audio. To the best of the authors’ knowledge, previous literature in

MTGC lacks any serious attention devoted to studying the complexities of movie audio modality.

Therefore, this work attempts to provide a detailed and dedicated study of the movie audio modality

so that it can aid in developing better MTGC frameworks in the future. Authors believe that basic

audio features may not be sufficient to perform a complicated task like MTGC. Wang et al. [37]

noted that it is not possible to find a direct relationship between human-level interpretations like

movie genre and basic audio features like MFCC. Therefore, learning genre-specific information

directly from the basic features may be difficult or unreliable. Nonetheless, these basic features

may be leveraged to derive intermediate representations that may be better equipped to map the

relationship between movie trailer audio and their corresponding genre labels. Such intermediate

representations can be trained to inherently capture the audio signal-type information. Hence, this

work proposes such an intermediate audio-based representation to be used in MTGC.
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Additionally, since speech and music are more prominently found in movies [24], the movie

trailer audio can be diarized into consecutive speech and music segments using the prediction scores

of a speech-music discriminator. Such diarization sequences can also provide vital information

about the underlying genre classes of the movie trailer. Thus, this work proposes for the first

time to use confidence score sequences of speech and music segments in the movie trailer audio

as a feature for training the MTGC classifier. Even though few previous works in MTGC have

performed speech-music classification using basic features and classifiers, those methods are

not easily generalizable to the diversity present in movie audio. This work proposes to use a

sophisticated speech-music detection system that can tackle the complex audio scapes of movie

trailers. It is hypothesized that more confident signal-type predictions will aid in developing

better features and classifiers. The speech-music score sequences are generated using a recent

classification method [40] that performed exceedingly well. The current work also employs various

statistics and learned representations obtained from the spectral peak sequences of audio signals as

additional features. Moreover, the attention mechanism has been recently shown to be a better way

of modeling the long-term temporal evolution of signals [41]. However, attention-based aggregation

of audio features has not been explored previously in the MTGC literature. Hence, this work also

explores for the first time an approach for attention-based audio-feature aggregation for MTGC.

It is to be noted that this work does not propose that only audio-based MTGC can be better than

multi-modal approaches. In a complicated task like MTGC, multi-modal approaches will always be

necessary to obtain satisfactory genre classification performance. The aim of this work is only to

improve the audio component of a generic multi-modal MTGC system.

The main contributions of this work are summarized below.

• First, this work proposes speech-music confidence score sequences of movie trailer audio as a

feature for MTGC for the first time (subsection 2.1).

• Second, unlike previous approaches that have simply used standard audio features like Mel

frequency cepstral coefficients, this work proposes to use learned representations. Such features

are expected to capture the information about audio types present in the underlying signal, which

might benefit the MTGC task.

• Third, this work proposes attention-based sequence modeling and aggregation of the audio

signal (speech and music) features for the first time in the MTGC task (section 3).

Rest of the paper includes a description of the proposed features in subsection 2.1, subsection 2.2

and 2.3, a description of the proposed classifier in subsection 3, discussion on experiments in

section 4, and conclusion in section 5.

2 PROPOSED APPROACH
This work proposes to extract human-level information about speech and music from movie trailer

audio for performing MTGC. Information about the audio signal type in movie trailers might aid in

mapping features from the underlying audio signals with information of human interpretation, like

movie genre. This work proposes to use speech-music confidence score sequences of movie trailer

audio as a feature. In addition, a learned representation derived using spectral peak tracking [40] is

used as another feature. Statistical measures computed from spectral peak tracks of trailer audio are

also used as a feature. The feature extraction procedure is described in the following subsections.

2.1 Speech-Music Predictions
As discussed previously, speech and music are the most prominent components of the movie trailer

audio. Hence, Speech and Music Confidence (SM-Conf) scores can be extracted for sound units in

the movie trailer audio sequences. These scores in the form of a time series would represent many
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Table 1. Comparative illustration of speech vs. music classification performance on the MUSAN dataset
using x-vector feature based X-SMC system and CBoW feature based C-SMC system. Results are reported as
“mean (𝜇) 𝐹1-score (over 3-fold cross-validation) ± standard deviation (𝜎)”. The 𝐹1 scores are expressed in
percentage.

Music Speech
Avg. F1

Features Acc Prec Rec F1 Prec Rec F1

X-SMC 98.88

±0.18
98.71

±0.56
98.57

±0.16
98.64

±0.25
98.99

±0.14
99.10

±0.35
99.04

±0.13
98.84
±0.19

C-SMC 96.60

±0.21
96.16

±0.92
95.58

±0.72
95.86

±0.37
96.90

±0.50
97.32

±0.57
97.11

±0.13
96.49

±0.25

vital details about the distribution of speech and music, their switching rate, and overall proportion

in the trailer. This work hypothesizes that such SM-Conf sequences might have genre-specific

characteristics. Therefore, such information might help identify the genre labels of movie trailers.

Thus, the SM-Conf sequences of movie trailer audio are used as a feature in the current task.

The SM-Conf scores can be obtained using trained classifiers that predict how much a sound

unit resembles speech or music. Mirbeygi et al. [42] have reviewed various Speech vs. Music

Classification (SMC) and separation methods previously proposed in the literature. This work

explores two recently proposed feature sets for the SMC task, viz., x-vectors [43] and Component

Bag-of-Words (CBoW) [40] features. Each of the SMC systems is described in the subsequent

paragraphs.

2.1.1 X-vector based SMC. The first feature used in this work for SMC is the x-vector [43]. The

x-vector was initially proposed for the speaker recognition task. Subsequently, researchers found

that the x-vectors were useful in tasks other than speaker recognition as well [44, 45, 46, 47]. The

x-vectors are extracted as embeddings from a DNN model trained for speaker recognition. In this

work, the trained model provided by the SpeechBrain toolkit [48] is used to extract 512-dimensional

x-vectors. For further details regarding x-vector computation, the reader is encouraged to refer to

the original paper [43]. TheMUSAN dataset [49] is used to train the x-vector SMC system (X-SMC).

The x-vectors for consecutive 1s segments of speech and music signal from the MUSAN dataset are

used to train a DNN for the SMC task. The DNN architecture is the same as the one used in [40].

The SMC training is performed in a three-fold cross-validation format. The speech and music

signals are split into three non-overlapping folds. At each iteration, one fold is used as the testing

set, while the other two are combined for training the model. The three-fold mean and standard

deviation of the performance of the X-SMC system is illustrated in Table 1.

2.1.2 CBoW-ASPT-LSPT based SMC. The second feature used for SMC in this work is the CBoW

feature proposed in [40]. The CBoW features are computed from the spectral peak amplitude or

the location information. It was shown that the combination of amplitude and location information

provided the best SMC performance. Accordingly, 200-dimensional CBoW features are used to train

an SMC system (C-SMC). The CBoW features are computed for consecutive 1s segments of speech

and music signals from the MUSAN dataset. A brief description of computing the CBoW features

is provided in subsection 2.2. For further details, the reader is encouraged to refer to the original

proposal [40]. The three-fold mean and standard deviation of the performance of the C-SMC system

is illustrated in Table 1.
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2.1.3 SMC training and performance. This work employs the Deep Neural Network (DNN) classifier

similar to the proposal in [40] for the SMC task. The DNN used for the SMC task has four hidden

layers. The number of neurons in each layer is calculated as two times, two-thirds, half, and one-

third of the feature dimension, respectively. For example, if the feature dimension is 60, then the

hidden-layer sizes starting from the input side would be 120, 40, 30, and 20, respectively. The output

of each hidden layer is passed through a ReLU activation, followed by Batch Normalization. The
layer outputs are subjected to a Dropout factor of 0.4 during training to act as a regularization and

avoid overfitting. The output layer has two neurons with SoftMax activation. The SoftMax layer

predicts the likelihood of the input sample being eiher speech or music. The network is optimized

using an Adam optimizer with an initial learning rate of 10
−4
. The X-SMC system is trained with an

input feature dimension of 512, whereas the C-SMC system uses an input feature of 200-dimensions.

Performances of the two systems on the MUSAN dataset illustrated in Table 1 indicates that the

X-SMC system performs better than C-SMC. It must be noted that the DNN architecture design

implies that the C-SMC system has approximately half the number of parameters as that of the

X-SMC system. Therefore, the C-SMC performs comparably to the X-SMC system with fewer

parameters. It may be further argued that the C-SMC might be less prone to overfitting theMUSAN
dataset than the X-SMC system because of the smaller model size.

This work uses the trained X-SMC and C-SMC systems to predict the SM-Conf score sequence

for the movie trailer audio. It may be noted that the whole trailer audio is passed through an

SMC system to obtain the SM-Conf sequences. Any non-speech and non-music sound present in

the trailer gets a confidence score for either speech or music. The sounds that differ significantly

from speech and music are believed to receive a low confidence score. Nevertheless, all confidence

scores are retained for performing the movie genre classification task. Since the SMC systems are

trained on a different dataset (MUSAN ), a median filter of kernel width 5 is used to suppress the

prediction noise in the SM-Conf score sequence. The sequence of smoothed SM-Conf scores is

directly passed through attention layers (see subsection 3) to model the relationship of speech and

music signals with the genre of a movie trailer. The learned feature representations used in this

work are discussed next.

2.2 Learned representations
Existingmovie genre classificationworks have primarily used audio features computed directly from

the signal. Subsequently, such features will be referred to as raw features unless mentioned otherwise.

Raw features measure typical characteristics of the underlying signal, like energy or zero-crossing

rate. Discriminative models may be used to learn the category-specific characteristics of a particular

classification task. The classification performance varies depending on the discriminability of a

particular raw feature. It is generally observed that raw features tend to be perturbed when noise is

added to the signals. Hence, learning an intermediate representation from the raw features that are
not directly affected by the signal noise might be helpful.

Learned representations might capture critical properties of the underlying signal that may

not be evident from the raw features. For example, the previously mentioned SM-Conf feature

is also a form of learned representation that indicates the likelihood of a 1s audio interval being

speech or music. However, the SM-Conf feature is a one-dimensional representation that may only

capture some of the variabilities involved in a complicated task like movie genre prediction. A

higher dimensional learned representation is required that can better capture information about

concepts like speech and music. In addition, the multi-dimensional nature of the feature would

help it retain sufficient movie genre information. The CBoW features proposed in [40] fit the above

description and are adopted in this work. The CBoW features were shown to capture the striation

pattern information of the signals under consideration. Curvy and linear striations characterize
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the speech and music signals, respectively [40]. The distinct patterns in these two signal types are

learned for extracting the CBoW features. This intermediate representation is believed to aid in

movie genre prediction since different aspects of speech and music signals carry genre-specific

cues. The following paragraphs describe the CBoW feature in brief.

Let, x[𝑛] (𝑛 = 1, . . . 𝑁𝑠 ) be a movie trailer audio of 𝑁𝑠 samples. Also, let 𝑋 [𝑘] [𝑡] (𝑘 = 1 . . . 𝑛𝑏 ,

𝑡 = 1 . . .𝑇𝑓 ) be its DFT magnitude spectrogram with 𝑛𝑏 frequency-bins and 𝑇𝑓 short-term frames

of size 𝑇𝑤 ms with a shift of 𝑇𝑠 ms. For each frame spectra in 𝑋 , 𝑛𝑝 prominent spectral peaks are

identified. The amplitude and frequency information of the selected spectral peaks are retained

in two 𝑛𝑝 × 𝑇𝑓 sized matrices A and L, respectively. The sequence of 𝑝 th (𝑝 = 1 . . . 𝑛𝑝 ) spectral

peak amplitude or location across the audio signals is termed peak traces. The peak traces are

believed to capture the distinct striation patterns in the time-frequency representation of speech

and music signals. The distributions of these peak traces are modeled using univariate Gaussian

Mixture Models (GMM), trained separately for speech and music signals.

An𝑚𝑔-mixture GMM is trained for each 𝑝 th peak-trace (𝑝 ∈ [1, 𝑛𝑝 ]) across the training set of

either speech or music. Thus, a total of 𝑛𝑝 GMMs are trained separately for peak-amplitude of

music (say G𝑝=1...𝑛𝑝A,𝑚𝑢 ), peak-location of music (say G𝑝=1...𝑛𝑝L,𝑚𝑢 ), peak-amplitude of speech (say G𝑝=1...𝑛𝑝A,𝑠𝑝 )

and peak-location of speech (say G𝑝=1...𝑛𝑝L,𝑠𝑝 ). Subsequently, for the amplitude or location of every

𝑛𝑝 prominent peak in an audio frame, 𝑚𝑔 posterior probabilities are obtained separately from

the speech and music GMMs. Thus, a 2 · 𝑛𝑝 ·𝑚𝑔-dimensional feature vector V𝐴 is obtained for

each short-term frame by concatenating the posterior probabilities from music and speech peak

amplitude GMMs. Similarly, a 2 ·𝑛𝑝 ·𝑚𝑔-dimensional feature vectorV𝐿 is obtained by concatenating

the posterior probabilities from music and speech peak-location GMMs. Finally,V𝐴 andV𝐿 feature

vectors are averaged over 1s segments. This step smooths the fluctuations introduced by the possible

presence of non-speech and non-music signals in movie trailers. A more detailed description of the

feature computation process is provided in [40].

The original proposal in [40] used the MUSAN dataset [49] for feature computation. The movie

trailer datasets do not provide annotations for speech and music signals present in the audio.

Therefore, this work uses GMMs trained using the MUSAN dataset to compute the V𝐴 and V𝐿

features for the movie trailers. Unless mentioned otherwise, these features will be collectively

referred to as GMM-Posterior Features (GPF).

2.3 Statistical representations of audio segments
In addition to modeling the peak information distribution using GMMs, this work employs various

statistical measures of the peak traces. Suchmeasures capture gross information about the variations

in the peak trace evolutions within an audio segment. In a previous work of the authors [40], only

the mean and standard deviation computed over the spectral peak traces were used for the SMC

task. This work extends the approach of [40] and computes twelve different statistical measures

over tracks of spectral peak amplitude and location information. These measures are computed

over 1s audio segments. The statistical measures computed in this work are maximum, minimum,

median, mode, mean, standard deviation, geometric mean, geometric standard deviation, harmonic

mean, entropy, skewness, and kurtosis. The 12 measures computed from 𝑛𝑝 peak amplitude traces

are concatenated to obtain a 12 ·𝑛𝑝 -dimensional feature vectorU𝐴. Similarly, a 12 ·𝑛𝑝 -dimensional

feature vectorU𝐿 is obtained from the𝑛𝑝 peak location traces. All the statistical measures computed

for the amplitude and location information of the 𝑛𝑝 spectral peak tracks are concatenated to form

a 24 · 𝑛𝑝 -dimensional feature vector for each 1s audio segment. These features will be collectively

referred to as Statistical-measure Features (SF). The SF features might be able to capture gross-

level characteristics of 1s audio segments and aid the learned representations (GPF) in the movie

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 0, No. 0, Article 0. Publication date: 2024.
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genre classification task. The following section describes the classifier architectures employed for

performing the movie genre classification in this work.

3 CLASSIFIER DESIGN
Researchers have previously used different classifiers in the movie genre prediction task. However,

deep neural networks with attention mechanisms have rarely been explored for the MTGC task.

Yu et al. [50] have recently shown the usefulness of attention in the MTGC task. However, they

employed attention to spatio-temporal features obtained from the visual modality. To the best of our

knowledge, the attention mechanism has not yet been used to aggregate audio features for MTGC.

This work explores two types of classifiers based on the attention mechanism. First, the application

of Transformer architecture [41] and second, the proposal of a variant of the CNN-Attention hybrid

model [51]. Various input feature matrices F𝑞 (𝑞 = 1, . . . 𝑛𝑓 ) of sizes 𝑑
(𝑞)
𝑚 × 𝑛𝑡 are fed to both

classifiers (subsection 2.1, subsection 2.2, and subsection 2.3). Here, 𝑛𝑓 is the number of input

features, 𝑑
(𝑞)
𝑚 indicates feature dimension size of the 𝑞th input matrix, and 𝑛𝑡 represents the number

of consecutive 1s intervals in an audio segment considered as a classification unit. The classifier

architectures are described next.

Transformer
Encoder

Transformer
Encoder

Gaussian Posterior
Features

Positional
Encodings

Encoder
Stacks

Transformer
Encoder

Transformer
Encoder

Statistical
Features

Transformer
Encoder

Transformer
Encoder

Speech Music
Predictions

Time-Axis Attention Layer

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

Transformer Encoder Block

Classification Layer

Fig. 2. Illustrating the TENN architecture used in this work.

3.1 Transformer-based architecture
The transformer architecture used in this work is illustrated in Fig. 2. The vanilla transformer

architecture [41] was proposed for the machine translation task. Therefore, it had an encoder and a

decoder component. This work performs the classification of input features into discrete categories.

Hence, the decoder part of the transformer is not used here. The encoder component is kept the

same as in the original proposal. The proposed architecture is referred to as Transformer-Encoder

based Neural Network (TENN). The input to the encoder block is a tensor of size 𝑑
(𝑞)
𝑚 × 𝑛𝑡 , where

𝑛𝑡 represents the number of timesteps while 𝑑
(𝑞)
𝑚 indicates the feature dimension. Each layer inside

the encoder block of TENN produces an output of the same shape as its input to enable residual

connections. A fully-connected layer projects the output of the encoder block to a 𝑑𝑜 -dimensional
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vector. The transformer architecture uses positional encoding to keep track of the order of input

embeddings. This work also employs the same method as the original proposal to encode positional

information into the features. As discussed previously, multiple features are used in this work.

An intermediate-fusion strategy was applied to the different features in the transformer classifier.

Each feature has a separate parallel branch of encoder stacks (as shown in Fig. 2). The original

proposal of a transformer network established that only attention-based architectures can be

equally or even more efficient than traditional neural networks like CNN [41]. The 𝑞th attention

output A (𝑞) = Attention
(
𝑄 (𝑞) , 𝐾 (𝑞) ,𝑉 (𝑞) )

of the encoder blocks used in this work is defined by

eqn. 1 [41].

Attention
(
𝑄 (𝑞) , 𝐾 (𝑞) ,𝑉 (𝑞)

)
= SoftMax

(
𝑄 (𝑞)𝐾 (𝑞)⊺√︁

𝑑𝑞

)
𝑉 (𝑞)

(1)

For each of the 𝑞th input, the query (𝑄 (𝑞)
), key (𝐾 (𝑞)

) and value (𝑉 (𝑞)
) matrices are set as 𝑄 (𝑞) =

𝐾 (𝑞) = 𝑉 (𝑞) = F𝑞 and 𝑑𝑞 = 𝑑
(𝑞)
𝑚 . The transformer design also includes Multi-Head Attention

(MHA). In single-head attention, the full rank query, key, and value matrices are used to compute

the attention outputs. In a 𝑛ℎ𝑒𝑎𝑑𝑠 MHA, the query, key, and value matrices are projected to 𝑛ℎ𝑒𝑎𝑑𝑠
separate lower-dimensional sub-spaces. All the projections are parallelly attended. The outputs of

these parallel operations (H𝑖 , 𝑖 = 1, . . . 𝑛ℎ𝑒𝑎𝑑𝑠 ) are concatenated and then projected to obtain the

output of size 𝑛𝑡 × 𝑑𝑜 . The MHA is defined in eqn. 2, and the operation in each attention head is

defined in eqn. 3 [41].

MHA(𝑄 (𝑞) , 𝐾 (𝑞) ,𝑉 (𝑞) ) = concat
( [
H1, . . .H𝑛heads

] )
·𝑊 𝑜

(2)

H𝑖 = Attention(𝑄 (𝑞)⊺ ·𝑊 (𝑞)
𝑄,𝑖

, 𝐾 (𝑞)⊺ ·𝑊 (𝑞)
𝐾,𝑖

,𝑉 (𝑞)⊺ ·𝑊 (𝑞)
𝑉 ,𝑖

) (3)

Here,𝑊
(𝑞)
𝑄,𝑖

,𝑊
(𝑞)
𝐾,𝑖

and,𝑊
(𝑞)
𝑉 ,𝑖

(𝑖 = 1, . . . 𝑛ℎ𝑒𝑎𝑑𝑠 ) are 𝑑
(𝑞)
𝑚 × 𝑑𝑘 weight matrices and𝑊 𝑜

is a 𝑑
(𝑞)
𝑚 × 𝑑𝑜

linear transformation. This work uses 𝑛ℎ𝑒𝑎𝑑𝑠 = 8, 𝑑𝑘 =
𝑑
(𝑞)
𝑚

𝑛ℎ𝑒𝑎𝑑𝑠
, and 𝑑𝑜 = 𝑑

(𝑞)
𝑚 as parameters in the

encoder blocks. The output of the encoder stacks for each feature is concatenated and aggregated

along the time axis using the attention mechanism (illustrated in Fig. 4). A detailed discussion

on aggregation attention is provided in the following subsection (subsection 3.2). The aggregated

output of the encoder stacks is then passed to a fully connected layer for genre classification. The

output layer has Sigmoid activation. The network is trained with a Binary Cross-entropy loss and

an Adam optimizer [52]. The initial learning rate is set to 0.001.

3.2 CNN-Attention hybrid architecture
This work proposes an Attention-based Deep Convolutional Neural Network (ACNN) classifier

for the MTGC task. Attention-based aggregation of audio features for the MTGC task has not

been previously explored. A block diagram of the proposed architecture is shown in Fig. 3. The

ACNN consists of separate convolutional branches for each of the feature inputs V𝐴, V𝐿 , U𝐴,

andU𝐿 . The Convolutional and Pooling Layer Block (CPLB) (see Fig. 3) is designed as a cascade of

processing layers. Each CPLB layer consists of a convolution stage with ReLU activation followed

by a max-pooling (by a factor of 2) along the feature dimension. Successive processing by a cascade

of these layers gradually reduces the feature dimension to unity. Information is encoded along

the channel dimensions while the feature dimension is pooled. The temporal dimension is not

sub-sampled in the CPLB layers.
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Attention Mechanism Block (AMB)

Convolutional Pooling Layers Block (CPLB)
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Legend

Fig. 3. Proposed ACNN classifier architecture for MTGC.

Consider an input Z(𝑙 )
of size 𝑑𝑓 × 𝑑𝑡 × 𝑑𝑐 to a certain 𝑙 th CPLB layer L (𝑙 )

𝐶𝑃𝐿𝐵
. Here, 𝑑𝑓 , 𝑑𝑡 , and 𝑑𝑐

refer to the input sizes along the feature, temporal, and channel dimensions. The convolution stage

of L (𝑙 )
𝐶𝑃𝐿𝐵

processes Z(𝑙 )
with 𝑛

(𝑙 )
𝑘

number of filter kernels of size 3× 3×𝑑𝑐 . The negative responses
of the convolution operations are suppressed by the ReLU activation function. The convolution

and ReLU activation stages produce Z(𝑙+1)
𝑐 of size 𝑑𝑓 × 𝑑𝑡 × 𝑑𝑐 . This is subjected to max-pooling

along the feature dimension only to produce the output Z(𝑙+1)
of size

𝑑𝑓

2

×𝑑𝑡 ×𝑑𝑐 . For the 𝑞th CPLB,

input to the first layer is Z(1) = F𝑞 with input size 𝑑
(𝑞)
𝑚 ×𝑛𝑡 × 1. Each layer in the CPLB contains 𝑛𝑐

convolution filter kernels. The number of convolution filters in each CPLB branch of the ACNN

classifier is set to 𝑛𝑐 = 80. A cascade of layers is applied to obtain an output tensor of the CPLB of

size 1 × 𝑛𝑡 × 𝑛𝑐 . This is further treated as a matrix output C𝑞 of size 𝑛𝑡 × 𝑛𝑐 .
The proposed Attention Mechanism Block (AMB) operates on a matrix input. In the case of

speech-music prediction features (SM-Conf), this matrix is of size 𝑛𝑡 × 2. For all other features,

they are first processed by respective CPLB units, and the corresponding outputs of size 𝑛𝑡 × 𝑛𝑐 are
processed by AMB. The AMB is used to compute the attention-weighted sum of rows and columns

of the input matrix. This provides attended feature vectors along the time and channel dimensions.

A description of the AMB is provided next.

nt

nc

nc

CPLB Output/ SM-Conf

AMB Output

Fig. 4. Block diagram of the attention module for computing time-axis attention output Γ𝑞 for the 𝑞th input
feature.
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Yang et al. [53] proposed an attention mechanism for document classification. This work proposes

an attention mechanism that is inspired from [53]. Current work employs attention to collate

representations learned by the convolution layers along the time and channel axes (see Fig.4). The

time-axis attention emphasizes time steps that are important in the underlying task. On the other

hand, channel-axis attention aims to capture the most informative kernels in the last convolutional

layer. C𝑞 is fed to a multi-layer network to perform time-axis attention. A representation
ˆℎ𝑞 of size

𝑛𝑡 × 𝑛𝑐 is obtained by using a 𝑛𝑡 × 𝑛𝑡 weight matrix �̂�𝑞 and a 𝑛𝑐 × 1 bias vector
ˆb𝑞 using eq 4.

ˆℎ𝑞 = tanh

(
�̂�𝑞C𝑞 + 1 · ˆb⊺𝑞

)
(4)

Here,
ˆb𝑞 =

[
𝑏1 . . . 𝑏𝑛𝑐

]⊺
and 1 = [1, . . . 1]⊺ is a 𝑛𝑡 × 1 vector of all ones. Next, a trainable 𝑛𝑡 × 1

weight vector û is used to obtain context-weights for every time step as follows:

𝛼𝑞 = SoftMax
(
ˆℎ
⊺
𝑞 · û𝑞

)
(5)

Finally, a 𝑛𝑐 -dimensional time-axis attention-weighted context-vector Γ𝑞 is obtained as follows:

Γ𝑞 =

𝑛𝑐∑︁
𝑗=1

𝛼𝑞 [ 𝑗] · C𝑞 [:] [ 𝑗] (6)

Proceeding in a similar fashion, a 𝑛𝑡 -dimensional channel-axis attention-weighted context-vector

Λ𝑞 is obtained by using another attention operation using

{
�̃�𝑞, ˜𝑏𝑞, �̃�𝑞

}
. Here, �̃�𝑞 is a 𝑛𝑐 × 1 weight

vector. The channel-axis attention mechanism is performed according to eqn. 7, eqn. 8, and eqn. 9,

respectively.

˜ℎ𝑞 = tanh

(
�̃�𝑞C𝑞 + 1 · ˜b⊺𝑞

)
(7)

𝛽𝑞 = SoftMax
(
˜ℎ
⊺
𝑞 · ũ𝑞

)
(8)

Λ𝑞 =

𝑛𝑡∑︁
𝑟=1

𝛽𝑞 [𝑟 ] · C𝑞 [𝑟 ] [:] (9)

The context vectors are concatenated to form a (𝑛𝑡 +𝑛𝑐 )-dimensional vector Θ𝑞 as in eqn. 10. Finally,

Θ𝑞 is fed to Fully-connected Layers Block (FLB) for classification.

Θ𝑞 =

[
Γ𝑞
Λ𝑞

]
(10)

The time and channel attention output from each feature branch is concatenated and fed through

a series of three 300-neuron fully-connected layers to a 13-node output layer that predicts each

genre’s probability. The output layer has 13 nodes because the Moviescope dataset has 13 unique
genre labels for all the component movies. Since it is a multi-label classification task, the output

nodes have a Sigmoid activation and are trained with a Binary Cross-entropy loss function. The

network is optimized using the Adam optimizer [52] with an initial learning rate of 0.001. The

outputs of all convolutional layers are passed through Linear activation and Batch Normalization.
Each of the fully-connected layers is followed by Batch Normalization, ReLU activation, and a

Dropout factor of 0.1. The hyperparameters of ACNN have been finalized after performing a grid

search over various possible values. The following section discusses the experiments performed

and their results.
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4 EXPERIMENT AND RESULTS
Recently, Cascante-Bonilla et al. [26] published amulti-modal movie trailer dataset calledMoviescope.
This dataset consists of ≈ 5000 trailer videos, plot summaries, posters, and other metadata. Movies

in the dataset are labeled with one or more genre labels from a list of 13 possible genres. Since the

Moviescope dataset is one of the largest datasets publicly available, the proposed MTGC method has

been benchmarked on this dataset. Only the audio component from the trailer videos is extracted

and used in this work. The audio signals are processed with a sampling rate of 𝑓𝑠 = 16000Hz, short-

term frame size of𝑇𝑤 = 10ms with a shift of𝑇𝑠 = 5ms (similar to [40]). Hamming window is applied

to the short-term frames to suppress windowing effects. The spectrograms have been computed

with 𝑛𝑏 = 10
−3 ·𝑇𝑤 · 𝑓𝑠 frequency bins. Spectral peak tracking is performed with 𝑛𝑝 = 10 prominent

peaks, and peak-trace GMMs are trained with𝑚𝑔 = 5 mixtures. Following Cascante-Bonilla et

al. [26], a 30s segment is used as input to the system. Thus, theV𝐴 input to ACNN classifier (see

Fig. 3) is a 2-dimensional feature patch of size 30 × 100, since every V𝐴 vector represents a 1s

segment. Similarly, V𝐿 input has a size of 30 × 100 (see Fig. 3). The statistical features U𝐴 and U𝐿

are presented to the classifier with an input size of 30 × 120 each (see Fig. 3). During the training of

classifiers, the learning rate is reduced by a factor of 10 if the validation loss does not improve for

5 consecutive epochs. The minimum learning rate allowed in training is 10
−8
. An early-stopping

criterion is also employed whereby the training is stopped if the validation loss does not improve

for 10 consecutive epochs. Codes used in this work are shared publicly
1
.

The proposed approach involves the use of multiple features for the classification task. In this

regard, two different feature fusion strategies have been used in this work. First, features are

combined in an intermediate classifier layer, where separate branches in the network learn from

different features. Second, a late-fusion strategy defined as a weighted sum of genre prediction scores

from separate models trained on different features is employed. The score weights are determined

experimentally. Following current literature [26], performances in this work are reported as the

area under precision-recall curves (𝐴𝑈 (𝑃𝑅𝐶)) for each genre separately. Additionally, three other

metrics are reported to assess the performance of the methods in an average sense. First, the mean

average precision (mAP) across categories is reported that calculates the mean of the binary metrics,

giving equal weight to each class. Second, the micro average precision (𝜇AP) computed over all

samples across all classess pooled together. Third, the sample average precision (sAP) is reported,
which does not calculate a per-class measure but instead calculates the metric over the true and

predicted classes for each sample in the evaluation data, returning their weighted average.

4.1 Baseline Methods
The performance of the proposed genre classification method has been compared with two recent

audio-based approaches from the literature. The proposal of Sharma et al. [35] is used as the first
baseline (𝐵1). It involves a set of 68 standard tempo-spectral audio features and K-Means clustering-

based audio segmentation information for theMTGC task. The second baseline (𝐵2) uses the proposal
presented in [26] (authors of Moviescope dataset). This work uses the Log-Mel Spectrograms (LMS)

of 30s segments as input to a Convolutional Recurrent Neural Network classifier for the MTGC

task. The work in 𝐵2 has used multiple modalities for the MTGC task. However, the performance

of this proposal is compared against the audio modality of 𝐵2 only. In this work, the LMS feature is

input as a 128 × 1407 patch (see [26] for details) to a convolutional branch similar to [26], with 50

kernels in each layer.

1
https://github.com/mrinmoy-iitg/MTGC_Speech_Music_Segmentation
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Table 2. Performances of SM-Conf obtained from X-vectors [43] and CBoW-ASPT-LSPT [40] based speech vs.
music classifiers. Results are reported in terms of genre-wise 𝐴𝑈 (𝑃𝑅𝐶). Also, macro average precision (mAP),
micro average precision (𝜇AP) and sample average precision (sAP) are reported in the last three columns.

Feature action anim bio com crime drama fam fant horr myst rom scifi thrlr mAP 𝜇AP sAP

X-SM-Conf 24.46 4.49 5.86 39.61 20.80 51.57 12.09 12.82 9.98 13.18 22.41 14.02 28.44 20.25 38.66 59.14

C-SM-Conf 28.05 4.90 8.88 61.35 25.69 64.53 11.28 13.28 15.01 13.05 25.51 16.24 34.21 25.09 42.66 59.44

Table 3. Performance of the transformer based classifier. Here, 𝐵2 indicates the only audio based results
reported by Cascante-Bonilla et al. [26]. Results are reported in terms of genre-wise 𝐴𝑈 (𝑃𝑅𝐶). Also, macro
average precision (mAP), micro average precision (𝜇AP) and sample average precision (sAP) are reported in
the last three columns.

Feature action anim bio com crime drama fam fant horr myst rom scifi thrlr mAP 𝜇AP sAP

𝐵2 56.70 48 11.20 86.20 40 79 49.60 44.70 37.60 22.70 43 27 56.30 46.30 61.40 72.30

1 block 57.24 35.24 9.79 84.38 31.28 74.09 35.28 18.34 32.54 25.6 40.96 25.36 52.62 40.67 58.23 70.96

2 blocks 54.44 21.57 10.23 83.77 30.54 72.52 29.20 14.84 30.54 23.56 41.67 24.39 52.10 38.09 56.87 70.21

3 blocks 49.26 18.09 9.79 82.68 25.42 71.92 26.16 13.94 22.48 22.63 39.15 23.68 50.68 35.51 55.46 69.35

4 blocks 45.29 16.03 11.67 80.80 27.53 72.37 23.41 13.73 25.79 23.81 38.79 21.72 49.28 35.01 54.54 68.62

5 blocks 25.83 3.83 8.17 56.95 19.11 61.23 10 13.48 8.73 9.49 19.82 15.84 32.05 22.11 41.48 59.12

6 blocks 25.76 3.71 8.96 58.41 19.16 62.86 9.65 12.43 12.40 12.23 24.93 15.62 32.08 23.18 41.69 59.17

4.2 Speech-music classification system
As previously discussed, this work explores two established feature sets for the SMC task. Both

the SMC systems were employed to obtain the SM-Conf sequences for the trailer audio from the

Moviescope dataset. Here, X-SM-Conf indicates the confidence scores obtained from the X-SMC

system. Similarly, the confidence scores obtained from C-SMC are labeled as C-SM-Conf. The X-SM-

Conf and C-SM-Conf are then used to train separate ACNN models to perform the MTGC task. This

experiment is performed to identify the more suitable SMC system through the obtained confidence

scores. Table 2 presents the MTGC performances obtained using X-SM-Conf and C-SM-Conf as

features of the ACNN classifiers. It was observed above that the X-SMC system performs better

than C-SMC (see Table 1). Therefore, it may be expected that X-SM-Conf computed using X-SMC

might perform better than the C-SM-Conf obtained from C-SMC in the MTGC task. However, it

may be observed from Table 2 that the C-SM-Conf provides significantly better performance than X-

SM-Conf. The poor performance of X-SM-Conf based MTGC may be due to poor generalizability of

the X-SMC system on the Moviescope dataset. Since the x-vector features are embeddings extracted

from a trained speaker verification model, they might be affected by the diverse set of sound types

in movie trailers. On the contrary, the CBoW features are posterior probabilities obtained from

GMMs trained on the peak traces of speech and music data. Hence, CBoW features may be less

affected by the variety of sounds in movie trailers. Based on these observations, the C-SM-Conf

score sequences are used in the rest of the experiments in the paper.

4.3 Performance of Transformer
Table 3 presents the performance of the transformer-based classifier illustrated in Fig. 2 (see sub-

section 3.1). The performance of this classifier is investigated with varying numbers of encoder
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Table 4. Performances of baseline and proposed methods in the MTGC task. Here, 𝑃1:=GPF+SF+C-SM-Conf
(Intermediate-Fusion), 𝑃2:=𝑃1+LMS (Intermediate-Fusion), 𝑃3:=𝑃1+LMS (Late-Fusion). Results are reported
in terms of genre-wise 𝐴𝑈 (𝑃𝑅𝐶). Also, macro average precision (mAP), micro average precision (𝜇AP) and
sample average precision (sAP) are reported in the last three columns.

Feature action anim bio com crime drama fam fant horr myst rom scifi thrlr mAP 𝜇AP sAP

𝐵1 43.77 20.83 8.53 76.79 27.91 72.07 26.71 14.86 24.18 20.39 38.55 24.85 46.80 34.74 53.17 68.47

𝐵2 56.70 48.00 11.20 86.20 40.00 79.00 49.60 44.70 37.60 22.70 43.00 27.00 56.30 46.30 61.40 72.30

𝑃1 58.85 51.14 11.74 85.90 37.52 79.87 46.55 27.35 40.99 32.92 41.53 27.37 60.65 46.62 62.03 73.15

𝑃2 63.53 54.62 11.70 87.43 38.89 81.53 53.98 35.13 48.75 29.30 42.97 27.14 62.39 49.34 64.90 75.53

𝑃3 37.05 67.40 9.86 86.65 40.79 78.83 61.74 37.05 50.28 24.55 42.17 22.87 60.14 51.48 65.57 75.78

blocks. Table 3 presents the results for one to six blocks in the encoder stack. Only the transformer

architecture with one encoder block provides comparable performance with the 𝐵2 baseline. The

performance also gradually drops with an increased number of encoder blocks. Such results indicate

that the model might overfit the training dataset because of too many trainable parameters and

too few training data. Indeed, the Moviescope dataset is not large enough to train deep networks

like transformers. Dosovitskiy et al. [54] showed that vanilla transformer models required signifi-

cant training data to outperform CNN models. Therefore, it might not be a good idea to train a

transformer-based classifier on the Moviescope dataset from scratch. A possible workaround might

be to use transfer learning to fine-tune a transformer model pre-trained on a task related to MTGC

on the Moviescope dataset. However, using the proposed features with the pre-trained network in

such a scenario will not be possible. Therefore, this work adopts another approach to perform the

classification. The CNN models require comparatively lesser training data than transformer-based

ones [54]. Thus, this work proposes to use the ACNN classifier for the MTGC task. The performance

of the ACNN classifier in MTGC is discussed in the following subsection.

4.4 Performance of ACNN classifier
The performance of the proposed features with the ACNN classifier is presented in Table 4. It can

be observed that the intermediate-fusion of GMF, SF, and SM-Conf features (𝑃1 in Table 4) with

the ACNN classifier performs better than both the baseline methods 𝐵1 and 𝐵2. The proposed

system performs poorly for Comedy, Crime, Family, Fantasy, and Romance while improving for

others. However, when combined with a raw feature like LMS, the system’s performance improves

significantly. In an intermediate fusion with the LMS feature (𝑃2 in Table 4), the system provides

lower performance only for the Crime, Fantasy, and Romance genres. However, the macro, micro,

and sample average 𝐴𝑈 (𝑃𝑅𝐶) values improve significantly. In a late-fusion setting (𝑃3 in Table 4),

the average performances improve even further. The 𝑃3 system significantly improves the detection

of Animation, Family, Horror, and Thriller genres. Note that GMMs trained on the MUSAN
dataset are used in this work. The performance of the proposed features might have improved if

the actual speech-music annotations for the movie trailer audio were available.

The effect of different segment durations on the classification performance of 𝑃1 is shown in

Fig. 5. With the increase in segment size, there is a general trend of improved performance. There

is a significant improvement when the segment size is increased to 30s. After that, a saturation of

the performance is observed. Thus, 30s can be an optimal segment duration for training a classifier

on theMoviescope dataset. Additionally, ablation results of the proposed features in a leave-one-out

form are provided in Table 5. It can be observed that each of the proposed features brings some
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Fig. 5. Performance of 𝑃1 at different segment sizes.

Table 5. Ablation performances of the proposed features. Here, “Best” label in the table implies GPF+SF+SM-
Conf (Intermediate-Fusion) with Time and Channel Attention. Results are reported in terms of genre-wise
𝐴𝑈 (𝑃𝑅𝐶). Also, macro average precision (mAP), micro average precision (𝜇AP) and sample average precision
(sAP) are reported in the last three columns.

Feature action anim bio com crime drama fam fant horr myst rom scifi thrlr mAP 𝜇AP sAP

Best 58.85 51.14 11.74 85.90 37.52 79.87 46.55 27.35 40.99 32.92 41.53 27.37 60.65 46.62 62.03 73.15

No GPF 54.83 40.2 10.05 83.42 34.26 73.93 37.26 21.86 32.66 23.52 40.88 25.42 53.52 41.26 58.06 71.03

No SF 60.91 41.18 10.49 85.64 39.04 77.87 40.76 21.56 41.57 31.69 43.49 25.32 57.04 44.65 59.09 70.61

No

C-SM-Conf

60.45 44.73 10.43 86.18 35.79 78.96 40.8 22.79 38.64 30.08 41.07 28.46 58.91 44.74 61.55 72.93

No Time

Attention

50.08 30.25 11.19 85.89 28.48 77.42 32.73 15.43 29.59 22.77 41.13 24.22 52.42 38.98 58.78 70.43

No Channel

Attention

59.36 50.34 10.71 85.91 35.6 79.53 42.79 23.45 37.95 30.24 42.47 27.4 58.86 45.32 61.61 72.97

No

Attention

60.27 48.48 10.95 85.28 34.17 79.95 41.75 25.91 41.59 28.96 41.85 25.73 58.51 45.24 61.61 72.84

additional information that improves the combined performance. Nonetheless, the GPF features

and the time axis attention appear to be the essential components in the current proposal.

4.5 Ablation Study
Table 5 presents the results of the ablation study to investigate the importance of each of the

proposed features and attention mechanisms. Each feature or attention operation is removed one at

a time, and the subsequent performance of the system is noted. The particular feature or attention

operation whose removal corresponds to the most significant drop in performance is considered as

most important in the current task. In the present case, the removal of GPF features and the time

attention correspond to the most significant drops in performance. Such results indicate that the

learned GPF features are helpful in the current MTGC task. Using distribution modeling algorithms

like GMMs to extract the GPF features might have made them more resilient to the complex sounds

in movies. Moreover, the attention based temporal aggregation of the audio features appears to be

aiding the MTGC task. Therefore, the results validate the hypothesis that learned features which

tend to capture human-level information, like audio type, might be helpful in the MTGC task.

4.6 Generalization Performance
The generalization performance of the proposed MTGC models on a different dataset is also

evaluated to establish the validity of the proposed method in MTGC. The EmoGDB [55] dataset

consists of 100 Indian movie trailers with six non-overlapping genre labels for each movie. The

Moviescope dataset predominantly consists of Hollywoodmovies. Hence, EmoGDB can be considered
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Fig. 6. Illustrating the generalization performance in the form of bar-charts. Results are reported in terms of
macro average precision (mAP), micro average precision (𝜇AP) and sample average precision (sAP).

an ideal choice for evaluating the generalization performance of models trained on the Moviescope
dataset. For this experiment, the model predictions for only the six possible labels from the EmoGDB
dataset are considered. The genre-wise predictions of both baseline and proposed methods for

EmoGDB dataset are scaled to [0, 1] over all samples before computing the performance metrics.

This step accounts for the differences in train and test data. The cross-dataset results of the 𝐵2

baseline [26] and the proposed methods are illustrated in Fig. 6. It can be observed that the proposed

features alone (see 𝑃1 in Fig. 6) do not perform better than the baseline in this case. However,

the late-fusion combination of proposed features with LMS (see 𝑃3 in Fig. 6) provides significant

improvement. Such results validate the efficacy of the proposed approach in MTGC.

5 CONCLUSION
The present work proposes the use of speech-music probability sequences for the task of movie

trailer genre classification. The audio-type cues are encoded in a learned feature representation

computed using spectral peak tracking of audio spectrograms. The learned feature, peak trace

statistical measures, and sequence of speech-music confidence scores of trailer audio are proposed

as features in this work. An Attention-based CNN classifier is used to perform the classification.

Results obtained with the proposed approach justify the utilization of speech-music segmentation

in movie genre classification. Moreover, the generalization performance of the proposed approach

is also found to be satisfactory.

This work only considered the speech and music audio types for MTGC. Movies also contain

other less frequent audio categories like environmental sounds and sound effects. Future work

may be directed to extract genre-specific information from such audio types as well. Moreover,

multi-modal approaches that include the present proposal as a component may also be explored

for improved performance.
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